CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
An authentication issue was addressed with improved state management. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7.6, macOS Sonoma 14.7.5, iOS 18.4 and iPadOS 18.4, visionOS 2.4. An attacker on the local network may be able to bypass authentication policy. |
A use-after-free issue was addressed with improved memory management. This issue is fixed in watchOS 11.5, macOS Sonoma 14.7.6, tvOS 18.5, iPadOS 17.7.7, iOS 18.5 and iPadOS 18.5, macOS Sequoia 15.5, visionOS 2.5, macOS Ventura 13.7.6. Parsing a file may lead to an unexpected app termination. |
A type confusion issue was addressed with improved memory handling. This issue is fixed in macOS Sequoia 15.4, macOS Sonoma 14.7.5. An attacker with user privileges may be able to read kernel memory. |
The issue was addressed with improved checks. This issue is fixed in macOS Sonoma 14.3, macOS Ventura 13.6.4. An app may be able to access sensitive user data. |
The ShopLentor – WooCommerce Builder for Elementor & Gutenberg +12 Modules – All in One Solution (formerly WooLentor) plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the slitems parameter in the WL Special Day Offer Widget in all versions up to, and including, 2.8.3 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor access or above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
WeGIA is a web manager for charitable institutions. A Stored Cross-Site Scripting (XSS) vulnerability was identified in the cadastrarSocio.php endpoint of the WeGIA application. This vulnerability allows attackers to inject malicious scripts into the local_recepcao parameter. The injected scripts are stored on the server and executed automatically whenever the affected page is accessed by users, posing a significant security risk. This vulnerability is fixed in 3.2.8. |
WeGIA is a web manager for charitable institutions. A Stored Cross-Site Scripting (XSS) vulnerability was identified in the CobrancaController.php endpoint of the WeGIA application. This vulnerability allows attackers to inject malicious scripts into the local_recepcao parameter. The injected scripts are stored on the server and executed automatically whenever the affected page is accessed by users, posing a significant security risk. This vulnerability is fixed in 3.2.8. |
An authenticated user without user-management permissions could view other users account information. |
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
A vulnerability was found in `podman build` and `buildah.` This issue occurs in a container breakout by using --jobs=2 and a race condition when building a malicious Containerfile. SELinux might mitigate it, but even with SELinux on, it still allows the enumeration of files and directories on the host. |
An authenticated administrator could modify the Created By username for a user account |
Users who were required to change their password could still access system information before changing their password |
Use after free in some Zoom Workplace Apps and SDKs may allow an authenticated user to conduct a denial of service via network access. |
ColdFusion versions 2025.1, 2023.13, 2021.19 and earlier are affected by a Server-Side Request Forgery (SSRF) vulnerability that could lead to limited file system read. A high-privilege authenticated attacker can force the application to make arbitrary requests via injection of arbitrary URLs. Exploitation of this issue does not require user interaction. |
A suspended or recently logged-out user could continue to interact with Blueframe until the time-out period occurred. |
In the Linux kernel, the following vulnerability has been resolved:
spi: cadence: Fix out-of-bounds array access in cdns_mrvl_xspi_setup_clock()
If requested_clk > 128, cdns_mrvl_xspi_setup_clock() iterates over the
entire cdns_mrvl_xspi_clk_div_list array without breaking out early,
causing 'i' to go beyond the array bounds.
Fix that by stopping the loop when it gets to the last entry, clamping
the clock to the minimum 6.25 MHz.
Fixes the following warning with an UBSAN kernel:
vmlinux.o: warning: objtool: cdns_mrvl_xspi_setup_clock: unexpected end of section .text.cdns_mrvl_xspi_setup_clock |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix slab-use-after-free on hdcp_work
[Why]
A slab-use-after-free is reported when HDCP is destroyed but the
property_validate_dwork queue is still running.
[How]
Cancel the delayed work when destroying workqueue.
(cherry picked from commit 725a04ba5a95e89c89633d4322430cfbca7ce128) |
In the Linux kernel, the following vulnerability has been resolved:
ppp: Fix KMSAN uninit-value warning with bpf
Syzbot caught an "KMSAN: uninit-value" warning [1], which is caused by the
ppp driver not initializing a 2-byte header when using socket filter.
The following code can generate a PPP filter BPF program:
'''
struct bpf_program fp;
pcap_t *handle;
handle = pcap_open_dead(DLT_PPP_PPPD, 65535);
pcap_compile(handle, &fp, "ip and outbound", 0, 0);
bpf_dump(&fp, 1);
'''
Its output is:
'''
(000) ldh [2]
(001) jeq #0x21 jt 2 jf 5
(002) ldb [0]
(003) jeq #0x1 jt 4 jf 5
(004) ret #65535
(005) ret #0
'''
Wen can find similar code at the following link:
https://github.com/ppp-project/ppp/blob/master/pppd/options.c#L1680
The maintainer of this code repository is also the original maintainer
of the ppp driver.
As you can see the BPF program skips 2 bytes of data and then reads the
'Protocol' field to determine if it's an IP packet. Then it read the first
byte of the first 2 bytes to determine the direction.
The issue is that only the first byte indicating direction is initialized
in current ppp driver code while the second byte is not initialized.
For normal BPF programs generated by libpcap, uninitialized data won't be
used, so it's not a problem. However, for carefully crafted BPF programs,
such as those generated by syzkaller [2], which start reading from offset
0, the uninitialized data will be used and caught by KMSAN.
[1] https://syzkaller.appspot.com/bug?extid=853242d9c9917165d791
[2] https://syzkaller.appspot.com/text?tag=ReproC&x=11994913980000 |
In the Linux kernel, the following vulnerability has been resolved:
vlan: enforce underlying device type
Currently, VLAN devices can be created on top of non-ethernet devices.
Besides the fact that it doesn't make much sense, this also causes a
bug which leaks the address of a kernel function to usermode.
When creating a VLAN device, we initialize GARP (garp_init_applicant)
and MRP (mrp_init_applicant) for the underlying device.
As part of the initialization process, we add the multicast address of
each applicant to the underlying device, by calling dev_mc_add.
__dev_mc_add uses dev->addr_len to determine the length of the new
multicast address.
This causes an out-of-bounds read if dev->addr_len is greater than 6,
since the multicast addresses provided by GARP and MRP are only 6
bytes long.
This behaviour can be reproduced using the following commands:
ip tunnel add gretest mode ip6gre local ::1 remote ::2 dev lo
ip l set up dev gretest
ip link add link gretest name vlantest type vlan id 100
Then, the following command will display the address of garp_pdu_rcv:
ip maddr show | grep 01:80:c2:00:00:21
Fix the bug by enforcing the type of the underlying device during VLAN
device initialization. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix possible crash when setting up bsg fails
If bsg_setup_queue() fails, the bsg_queue is assigned a non-NULL value.
Consequently, in mpi3mr_bsg_exit(), the condition "if(!mrioc->bsg_queue)"
will not be satisfied, preventing execution from entering
bsg_remove_queue(), which could lead to the following crash:
BUG: kernel NULL pointer dereference, address: 000000000000041c
Call Trace:
<TASK>
mpi3mr_bsg_exit+0x1f/0x50 [mpi3mr]
mpi3mr_remove+0x6f/0x340 [mpi3mr]
pci_device_remove+0x3f/0xb0
device_release_driver_internal+0x19d/0x220
unbind_store+0xa4/0xb0
kernfs_fop_write_iter+0x11f/0x200
vfs_write+0x1fc/0x3e0
ksys_write+0x67/0xe0
do_syscall_64+0x38/0x80
entry_SYSCALL_64_after_hwframe+0x78/0xe2 |