CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
erofs: handle overlapped pclusters out of crafted images properly
syzbot reported a task hang issue due to a deadlock case where it is
waiting for the folio lock of a cached folio that will be used for
cache I/Os.
After looking into the crafted fuzzed image, I found it's formed with
several overlapped big pclusters as below:
Ext: logical offset | length : physical offset | length
0: 0.. 16384 | 16384 : 151552.. 167936 | 16384
1: 16384.. 32768 | 16384 : 155648.. 172032 | 16384
2: 32768.. 49152 | 16384 : 537223168.. 537239552 | 16384
...
Here, extent 0/1 are physically overlapped although it's entirely
_impossible_ for normal filesystem images generated by mkfs.
First, managed folios containing compressed data will be marked as
up-to-date and then unlocked immediately (unlike in-place folios) when
compressed I/Os are complete. If physical blocks are not submitted in
the incremental order, there should be separate BIOs to avoid dependency
issues. However, the current code mis-arranges z_erofs_fill_bio_vec()
and BIO submission which causes unexpected BIO waits.
Second, managed folios will be connected to their own pclusters for
efficient inter-queries. However, this is somewhat hard to implement
easily if overlapped big pclusters exist. Again, these only appear in
fuzzed images so let's simply fall back to temporary short-lived pages
for correctness.
Additionally, it justifies that referenced managed folios cannot be
truncated for now and reverts part of commit 2080ca1ed3e4 ("erofs: tidy
up `struct z_erofs_bvec`") for simplicity although it shouldn't be any
difference. |
In the Linux kernel, the following vulnerability has been resolved:
exfat: resolve memory leak from exfat_create_upcase_table()
If exfat_load_upcase_table reaches end and returns -EINVAL,
allocated memory doesn't get freed and while
exfat_load_default_upcase_table allocates more memory, leading to a
memory leak.
Here's link to syzkaller crash report illustrating this issue:
https://syzkaller.appspot.com/text?tag=CrashReport&x=1406c201980000 |
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: do not stop RX on failing RX callback
RX callbacks can fail for multiple reasons:
* Payload too short
* Payload formatted incorrecly (e.g. bad NCM framing)
* Lack of memory
None of these should cause the driver to seize up.
Make such failures non-critical and continue processing further
incoming URBs. |
In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Restrict high priorities on group_create
We were allowing any users to create a high priority group without any
permission checks. As a result, this was allowing possible denial of
service.
We now only allow the DRM master or users with the CAP_SYS_NICE
capability to set higher priorities than PANTHOR_GROUP_PRIORITY_MEDIUM.
As the sole user of that uAPI lives in Mesa and hardcode a value of
MEDIUM [1], this should be safe to do.
Additionally, as those checks are performed at the ioctl level,
panthor_group_create now only check for priority level validity.
[1]https://gitlab.freedesktop.org/mesa/mesa/-/blob/f390835074bdf162a63deb0311d1a6de527f9f89/src/gallium/drivers/panfrost/pan_csf.c#L1038 |
In the Linux kernel, the following vulnerability has been resolved:
mm/slub: add check for s->flags in the alloc_tagging_slab_free_hook
When enable CONFIG_MEMCG & CONFIG_KFENCE & CONFIG_KMEMLEAK, the following
warning always occurs,This is because the following call stack occurred:
mem_pool_alloc
kmem_cache_alloc_noprof
slab_alloc_node
kfence_alloc
Once the kfence allocation is successful,slab->obj_exts will not be empty,
because it has already been assigned a value in kfence_init_pool.
Since in the prepare_slab_obj_exts_hook function,we perform a check for
s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE),the alloc_tag_add function
will not be called as a result.Therefore,ref->ct remains NULL.
However,when we call mem_pool_free,since obj_ext is not empty, it
eventually leads to the alloc_tag_sub scenario being invoked. This is
where the warning occurs.
So we should add corresponding checks in the alloc_tagging_slab_free_hook.
For __GFP_NO_OBJ_EXT case,I didn't see the specific case where it's using
kfence,so I won't add the corresponding check in
alloc_tagging_slab_free_hook for now.
[ 3.734349] ------------[ cut here ]------------
[ 3.734807] alloc_tag was not set
[ 3.735129] WARNING: CPU: 4 PID: 40 at ./include/linux/alloc_tag.h:130 kmem_cache_free+0x444/0x574
[ 3.735866] Modules linked in: autofs4
[ 3.736211] CPU: 4 UID: 0 PID: 40 Comm: ksoftirqd/4 Tainted: G W 6.11.0-rc3-dirty #1
[ 3.736969] Tainted: [W]=WARN
[ 3.737258] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
[ 3.737875] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 3.738501] pc : kmem_cache_free+0x444/0x574
[ 3.738951] lr : kmem_cache_free+0x444/0x574
[ 3.739361] sp : ffff80008357bb60
[ 3.739693] x29: ffff80008357bb70 x28: 0000000000000000 x27: 0000000000000000
[ 3.740338] x26: ffff80008207f000 x25: ffff000b2eb2fd60 x24: ffff0000c0005700
[ 3.740982] x23: ffff8000804229e4 x22: ffff800082080000 x21: ffff800081756000
[ 3.741630] x20: fffffd7ff8253360 x19: 00000000000000a8 x18: ffffffffffffffff
[ 3.742274] x17: ffff800ab327f000 x16: ffff800083398000 x15: ffff800081756df0
[ 3.742919] x14: 0000000000000000 x13: 205d344320202020 x12: 5b5d373038343337
[ 3.743560] x11: ffff80008357b650 x10: 000000000000005d x9 : 00000000ffffffd0
[ 3.744231] x8 : 7f7f7f7f7f7f7f7f x7 : ffff80008237bad0 x6 : c0000000ffff7fff
[ 3.744907] x5 : ffff80008237ba78 x4 : ffff8000820bbad0 x3 : 0000000000000001
[ 3.745580] x2 : 68d66547c09f7800 x1 : 68d66547c09f7800 x0 : 0000000000000000
[ 3.746255] Call trace:
[ 3.746530] kmem_cache_free+0x444/0x574
[ 3.746931] mem_pool_free+0x44/0xf4
[ 3.747306] free_object_rcu+0xc8/0xdc
[ 3.747693] rcu_do_batch+0x234/0x8a4
[ 3.748075] rcu_core+0x230/0x3e4
[ 3.748424] rcu_core_si+0x14/0x1c
[ 3.748780] handle_softirqs+0x134/0x378
[ 3.749189] run_ksoftirqd+0x70/0x9c
[ 3.749560] smpboot_thread_fn+0x148/0x22c
[ 3.749978] kthread+0x10c/0x118
[ 3.750323] ret_from_fork+0x10/0x20
[ 3.750696] ---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
drm/imagination: Free pvr_vm_gpuva after unlink
This caused a measurable memory leak. Although the individual
allocations are small, the leaks occurs in a high-usage codepath
(remapping or unmapping device memory) so they add up quickly. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix double put of @cfile in smb2_rename_path()
If smb2_set_path_attr() is called with a valid @cfile and returned
-EINVAL, we need to call cifs_get_writable_path() again as the
reference of @cfile was already dropped by previous smb2_compound_op()
call. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix opregion leak
Being part o the display, ideally the setup and cleanup would be done by
display itself. However this is a bigger refactor that needs to be done
on both i915 and xe. For now, just fix the leak:
unreferenced object 0xffff8881a0300008 (size 192):
comm "modprobe", pid 4354, jiffies 4295647021
hex dump (first 32 bytes):
00 00 87 27 81 88 ff ff 18 80 9b 00 00 c9 ff ff ...'............
18 81 9b 00 00 c9 ff ff 00 00 00 00 00 00 00 00 ................
backtrace (crc 99260e31):
[<ffffffff823ce65b>] kmemleak_alloc+0x4b/0x80
[<ffffffff81493be2>] kmalloc_trace_noprof+0x312/0x3d0
[<ffffffffa1345679>] intel_opregion_setup+0x89/0x700 [xe]
[<ffffffffa125bfaf>] xe_display_init_noirq+0x2f/0x90 [xe]
[<ffffffffa1199ec3>] xe_device_probe+0x7a3/0xbf0 [xe]
[<ffffffffa11f3713>] xe_pci_probe+0x333/0x5b0 [xe]
[<ffffffff81af6be8>] local_pci_probe+0x48/0xb0
[<ffffffff81af8778>] pci_device_probe+0xc8/0x280
[<ffffffff81d09048>] really_probe+0xf8/0x390
[<ffffffff81d0937a>] __driver_probe_device+0x8a/0x170
[<ffffffff81d09503>] driver_probe_device+0x23/0xb0
[<ffffffff81d097b7>] __driver_attach+0xc7/0x190
[<ffffffff81d0628d>] bus_for_each_dev+0x7d/0xd0
[<ffffffff81d0851e>] driver_attach+0x1e/0x30
[<ffffffff81d07ac7>] bus_add_driver+0x117/0x250
(cherry picked from commit 6f4e43a2f771b737d991142ec4f6d4b7ff31fbb4) |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix missing workqueue destroy in xe_gt_pagefault
On driver reload we never free up the memory for the pagefault and
access counter workqueues. Add those destroy calls here.
(cherry picked from commit 7586fc52b14e0b8edd0d1f8a434e0de2078b7b2b) |
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: bcm_sf2: Fix a possible memory leak in bcm_sf2_mdio_register()
bcm_sf2_mdio_register() calls of_phy_find_device() and then
phy_device_remove() in a loop to remove existing PHY devices.
of_phy_find_device() eventually calls bus_find_device(), which calls
get_device() on the returned struct device * to increment the refcount.
The current implementation does not decrement the refcount, which causes
memory leak.
This commit adds the missing phy_device_free() call to decrement the
refcount via put_device() to balance the refcount. |
In the Linux kernel, the following vulnerability has been resolved:
s390/sclp: Prevent release of buffer in I/O
When a task waiting for completion of a Store Data operation is
interrupted, an attempt is made to halt this operation. If this attempt
fails due to a hardware or firmware problem, there is a chance that the
SCLP facility might store data into buffers referenced by the original
operation at a later time.
Handle this situation by not releasing the referenced data buffers if
the halt attempt fails. For current use cases, this might result in a
leak of few pages of memory in case of a rare hardware/firmware
malfunction. |
In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leaks and crashes while performing a soft reset
The second tagged commit introduced a UAF, as it removed restoring
q_vector->vport pointers after reinitializating the structures.
This is due to that all queue allocation functions are performed here
with the new temporary vport structure and those functions rewrite
the backpointers to the vport. Then, this new struct is freed and
the pointers start leading to nowhere.
But generally speaking, the current logic is very fragile. It claims
to be more reliable when the system is low on memory, but in fact, it
consumes two times more memory as at the moment of running this
function, there are two vports allocated with their queues and vectors.
Moreover, it claims to prevent the driver from running into "bad state",
but in fact, any error during the rebuild leaves the old vport in the
partially allocated state.
Finally, if the interface is down when the function is called, it always
allocates a new queue set, but when the user decides to enable the
interface later on, vport_open() allocates them once again, IOW there's
a clear memory leak here.
Just don't allocate a new queue set when performing a reset, that solves
crashes and memory leaks. Readd the old queue number and reopen the
interface on rollback - that solves limbo states when the device is left
disabled and/or without HW queues enabled. |
In the Linux kernel, the following vulnerability has been resolved:
fuse: Initialize beyond-EOF page contents before setting uptodate
fuse_notify_store(), unlike fuse_do_readpage(), does not enable page
zeroing (because it can be used to change partial page contents).
So fuse_notify_store() must be more careful to fully initialize page
contents (including parts of the page that are beyond end-of-file)
before marking the page uptodate.
The current code can leave beyond-EOF page contents uninitialized, which
makes these uninitialized page contents visible to userspace via mmap().
This is an information leak, but only affects systems which do not
enable init-on-alloc (via CONFIG_INIT_ON_ALLOC_DEFAULT_ON=y or the
corresponding kernel command line parameter). |
In the Linux kernel, the following vulnerability has been resolved:
nvme: apple: fix device reference counting
Drivers must call nvme_uninit_ctrl after a successful nvme_init_ctrl.
Split the allocation side out to make the error handling boundary easier
to navigate. The apple driver had been doing this wrong, leaking the
controller device memory on a tagset failure. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: change DMA direction while mapping reinjected packets
For fragmented packets, ath12k reassembles each fragment as a normal
packet and then reinjects it into HW ring. In this case, the DMA
direction should be DMA_TO_DEVICE, not DMA_FROM_DEVICE. Otherwise,
an invalid payload may be reinjected into the HW and
subsequently delivered to the host.
Given that arbitrary memory can be allocated to the skb buffer,
knowledge about the data contained in the reinjected buffer is lacking.
Consequently, there’s a risk of private information being leaked.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.1.1-00209-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
vhost/vsock: always initialize seqpacket_allow
There are two issues around seqpacket_allow:
1. seqpacket_allow is not initialized when socket is
created. Thus if features are never set, it will be
read uninitialized.
2. if VIRTIO_VSOCK_F_SEQPACKET is set and then cleared,
then seqpacket_allow will not be cleared appropriately
(existing apps I know about don't usually do this but
it's legal and there's no way to be sure no one relies
on this).
To fix:
- initialize seqpacket_allow after allocation
- set it unconditionally in set_features |
In the Linux kernel, the following vulnerability has been resolved:
devres: Fix memory leakage caused by driver API devm_free_percpu()
It will cause memory leakage when use driver API devm_free_percpu()
to free memory allocated by devm_alloc_percpu(), fixed by using
devres_release() instead of devres_destroy() within devm_free_percpu(). |
In the Linux kernel, the following vulnerability has been resolved:
net: usb: qmi_wwan: fix memory leak for not ip packets
Free the unused skb when not ip packets arrive. |
In the Linux kernel, the following vulnerability has been resolved:
block: initialize integrity buffer to zero before writing it to media
Metadata added by bio_integrity_prep is using plain kmalloc, which leads
to random kernel memory being written media. For PI metadata this is
limited to the app tag that isn't used by kernel generated metadata,
but for non-PI metadata the entire buffer leaks kernel memory.
Fix this by adding the __GFP_ZERO flag to allocations for writes. |
In the Linux kernel, the following vulnerability has been resolved:
ice: Add a per-VF limit on number of FDIR filters
While the iavf driver adds a s/w limit (128) on the number of FDIR
filters that the VF can request, a malicious VF driver can request more
than that and exhaust the resources for other VFs.
Add a similar limit in ice. |