CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix deinitialization of firmware resources
Currently, in ath11k_ahb_fw_resources_init(), iommu domain
mapping is done only for the chipsets having fixed firmware
memory. Also, for such chipsets, mapping is done only if it
does not have TrustZone support.
During deinitialization, only if TrustZone support is not there,
iommu is unmapped back. However, for non fixed firmware memory
chipsets, TrustZone support is not there and this makes the
condition check to true and it tries to unmap the memory which
was not mapped during initialization.
This leads to the following trace -
[ 83.198790] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
[ 83.259537] Modules linked in: ath11k_ahb ath11k qmi_helpers
.. snip ..
[ 83.280286] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 83.287228] pc : __iommu_unmap+0x30/0x140
[ 83.293907] lr : iommu_unmap+0x5c/0xa4
[ 83.298072] sp : ffff80000b3abad0
.. snip ..
[ 83.369175] Call trace:
[ 83.376282] __iommu_unmap+0x30/0x140
[ 83.378541] iommu_unmap+0x5c/0xa4
[ 83.382360] ath11k_ahb_fw_resource_deinit.part.12+0x2c/0xac [ath11k_ahb]
[ 83.385666] ath11k_ahb_free_resources+0x140/0x17c [ath11k_ahb]
[ 83.392521] ath11k_ahb_shutdown+0x34/0x40 [ath11k_ahb]
[ 83.398248] platform_shutdown+0x20/0x2c
[ 83.403455] device_shutdown+0x16c/0x1c4
[ 83.407621] kernel_restart_prepare+0x34/0x3c
[ 83.411529] kernel_restart+0x14/0x74
[ 83.415781] __do_sys_reboot+0x1c4/0x22c
[ 83.419427] __arm64_sys_reboot+0x1c/0x24
[ 83.423420] invoke_syscall+0x44/0xfc
[ 83.427326] el0_svc_common.constprop.3+0xac/0xe8
[ 83.430974] do_el0_svc+0xa0/0xa8
[ 83.435659] el0_svc+0x1c/0x44
[ 83.438957] el0t_64_sync_handler+0x60/0x144
[ 83.441910] el0t_64_sync+0x15c/0x160
[ 83.446343] Code: aa0103f4 f9400001 f90027a1 d2800001 (f94006a0)
[ 83.449903] ---[ end trace 0000000000000000 ]---
This can be reproduced by probing an AHB chipset which is not
having a fixed memory region. During reboot (or rmmod) trace
can be seen.
Fix this issue by adding a condition check on firmware fixed memory
hw_param as done in the counter initialization function.
Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
xfrm: fix slab-use-after-free in decode_session6
When the xfrm device is set to the qdisc of the sfb type, the cb field
of the sent skb may be modified during enqueuing. Then,
slab-use-after-free may occur when the xfrm device sends IPv6 packets.
The stack information is as follows:
BUG: KASAN: slab-use-after-free in decode_session6+0x103f/0x1890
Read of size 1 at addr ffff8881111458ef by task swapper/3/0
CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.4.0-next-20230707 #409
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0xd9/0x150
print_address_description.constprop.0+0x2c/0x3c0
kasan_report+0x11d/0x130
decode_session6+0x103f/0x1890
__xfrm_decode_session+0x54/0xb0
xfrmi_xmit+0x173/0x1ca0
dev_hard_start_xmit+0x187/0x700
sch_direct_xmit+0x1a3/0xc30
__qdisc_run+0x510/0x17a0
__dev_queue_xmit+0x2215/0x3b10
neigh_connected_output+0x3c2/0x550
ip6_finish_output2+0x55a/0x1550
ip6_finish_output+0x6b9/0x1270
ip6_output+0x1f1/0x540
ndisc_send_skb+0xa63/0x1890
ndisc_send_rs+0x132/0x6f0
addrconf_rs_timer+0x3f1/0x870
call_timer_fn+0x1a0/0x580
expire_timers+0x29b/0x4b0
run_timer_softirq+0x326/0x910
__do_softirq+0x1d4/0x905
irq_exit_rcu+0xb7/0x120
sysvec_apic_timer_interrupt+0x97/0xc0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20
RIP: 0010:intel_idle_hlt+0x23/0x30
Code: 1f 84 00 00 00 00 00 f3 0f 1e fa 41 54 41 89 d4 0f 1f 44 00 00 66 90 0f 1f 44 00 00 0f 00 2d c4 9f ab 00 0f 1f 44 00 00 fb f4 <fa> 44 89 e0 41 5c c3 66 0f 1f 44 00 00 f3 0f 1e fa 41 54 41 89 d4
RSP: 0018:ffffc90000197d78 EFLAGS: 00000246
RAX: 00000000000a83c3 RBX: ffffe8ffffd09c50 RCX: ffffffff8a22d8e5
RDX: 0000000000000001 RSI: ffffffff8d3f8080 RDI: ffffe8ffffd09c50
RBP: ffffffff8d3f8080 R08: 0000000000000001 R09: ffffed1026ba6d9d
R10: ffff888135d36ceb R11: 0000000000000001 R12: 0000000000000001
R13: ffffffff8d3f8100 R14: 0000000000000001 R15: 0000000000000000
cpuidle_enter_state+0xd3/0x6f0
cpuidle_enter+0x4e/0xa0
do_idle+0x2fe/0x3c0
cpu_startup_entry+0x18/0x20
start_secondary+0x200/0x290
secondary_startup_64_no_verify+0x167/0x16b
</TASK>
Allocated by task 939:
kasan_save_stack+0x22/0x40
kasan_set_track+0x25/0x30
__kasan_slab_alloc+0x7f/0x90
kmem_cache_alloc_node+0x1cd/0x410
kmalloc_reserve+0x165/0x270
__alloc_skb+0x129/0x330
inet6_ifa_notify+0x118/0x230
__ipv6_ifa_notify+0x177/0xbe0
addrconf_dad_completed+0x133/0xe00
addrconf_dad_work+0x764/0x1390
process_one_work+0xa32/0x16f0
worker_thread+0x67d/0x10c0
kthread+0x344/0x440
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff888111145800
which belongs to the cache skbuff_small_head of size 640
The buggy address is located 239 bytes inside of
freed 640-byte region [ffff888111145800, ffff888111145a80)
As commit f855691975bb ("xfrm6: Fix the nexthdr offset in
_decode_session6.") showed, xfrm_decode_session was originally intended
only for the receive path. IP6CB(skb)->nhoff is not set during
transmission. Therefore, set the cb field in the skb to 0 before
sending packets. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Properly order ib_device_unalloc() to avoid UAF
ib_dealloc_device() should be called only after device cleanup. Fix the
dealloc sequence. |
In the Linux kernel, the following vulnerability has been resolved:
clk: tegra: tegra124-emc: Fix potential memory leak
The tegra and tegra needs to be freed in the error handling path, otherwise
it will be leaked. |
In the Linux kernel, the following vulnerability has been resolved:
qed: allow sleep in qed_mcp_trace_dump()
By default, qed_mcp_cmd_and_union() delays 10us at a time in a loop
that can run 500K times, so calls to qed_mcp_nvm_rd_cmd()
may block the current thread for over 5s.
We observed thread scheduling delays over 700ms in production,
with stacktraces pointing to this code as the culprit.
qed_mcp_trace_dump() is called from ethtool, so sleeping is permitted.
It already can sleep in qed_mcp_halt(), which calls qed_mcp_cmd().
Add a "can sleep" parameter to qed_find_nvram_image() and
qed_nvram_read() so they can sleep during qed_mcp_trace_dump().
qed_mcp_trace_get_meta_info() and qed_mcp_trace_read_meta(),
called only by qed_mcp_trace_dump(), allow these functions to sleep.
I can't tell if the other caller (qed_grc_dump_mcp_hw_dump()) can sleep,
so keep b_can_sleep set to false when it calls these functions.
An example stacktrace from a custom warning we added to the kernel
showing a thread that has not scheduled despite long needing resched:
[ 2745.362925,17] ------------[ cut here ]------------
[ 2745.362941,17] WARNING: CPU: 23 PID: 5640 at arch/x86/kernel/irq.c:233 do_IRQ+0x15e/0x1a0()
[ 2745.362946,17] Thread not rescheduled for 744 ms after irq 99
[ 2745.362956,17] Modules linked in: ...
[ 2745.363339,17] CPU: 23 PID: 5640 Comm: lldpd Tainted: P O 4.4.182+ #202104120910+6d1da174272d.61x
[ 2745.363343,17] Hardware name: FOXCONN MercuryB/Quicksilver Controller, BIOS H11P1N09 07/08/2020
[ 2745.363346,17] 0000000000000000 ffff885ec07c3ed8 ffffffff8131eb2f ffff885ec07c3f20
[ 2745.363358,17] ffffffff81d14f64 ffff885ec07c3f10 ffffffff81072ac2 ffff88be98ed0000
[ 2745.363369,17] 0000000000000063 0000000000000174 0000000000000074 0000000000000000
[ 2745.363379,17] Call Trace:
[ 2745.363382,17] <IRQ> [<ffffffff8131eb2f>] dump_stack+0x8e/0xcf
[ 2745.363393,17] [<ffffffff81072ac2>] warn_slowpath_common+0x82/0xc0
[ 2745.363398,17] [<ffffffff81072b4c>] warn_slowpath_fmt+0x4c/0x50
[ 2745.363404,17] [<ffffffff810d5a8e>] ? rcu_irq_exit+0xae/0xc0
[ 2745.363408,17] [<ffffffff817c99fe>] do_IRQ+0x15e/0x1a0
[ 2745.363413,17] [<ffffffff817c7ac9>] common_interrupt+0x89/0x89
[ 2745.363416,17] <EOI> [<ffffffff8132aa74>] ? delay_tsc+0x24/0x50
[ 2745.363425,17] [<ffffffff8132aa04>] __udelay+0x34/0x40
[ 2745.363457,17] [<ffffffffa04d45ff>] qed_mcp_cmd_and_union+0x36f/0x7d0 [qed]
[ 2745.363473,17] [<ffffffffa04d5ced>] qed_mcp_nvm_rd_cmd+0x4d/0x90 [qed]
[ 2745.363490,17] [<ffffffffa04e1dc7>] qed_mcp_trace_dump+0x4a7/0x630 [qed]
[ 2745.363504,17] [<ffffffffa04e2556>] ? qed_fw_asserts_dump+0x1d6/0x1f0 [qed]
[ 2745.363520,17] [<ffffffffa04e4ea7>] qed_dbg_mcp_trace_get_dump_buf_size+0x37/0x80 [qed]
[ 2745.363536,17] [<ffffffffa04ea881>] qed_dbg_feature_size+0x61/0xa0 [qed]
[ 2745.363551,17] [<ffffffffa04eb427>] qed_dbg_all_data_size+0x247/0x260 [qed]
[ 2745.363560,17] [<ffffffffa0482c10>] qede_get_regs_len+0x30/0x40 [qede]
[ 2745.363566,17] [<ffffffff816c9783>] ethtool_get_drvinfo+0xe3/0x190
[ 2745.363570,17] [<ffffffff816cc152>] dev_ethtool+0x1362/0x2140
[ 2745.363575,17] [<ffffffff8109bcc6>] ? finish_task_switch+0x76/0x260
[ 2745.363580,17] [<ffffffff817c2116>] ? __schedule+0x3c6/0x9d0
[ 2745.363585,17] [<ffffffff810dbd50>] ? hrtimer_start_range_ns+0x1d0/0x370
[ 2745.363589,17] [<ffffffff816c1e5b>] ? dev_get_by_name_rcu+0x6b/0x90
[ 2745.363594,17] [<ffffffff816de6a8>] dev_ioctl+0xe8/0x710
[ 2745.363599,17] [<ffffffff816a58a8>] sock_do_ioctl+0x48/0x60
[ 2745.363603,17] [<ffffffff816a5d87>] sock_ioctl+0x1c7/0x280
[ 2745.363608,17] [<ffffffff8111f393>] ? seccomp_phase1+0x83/0x220
[ 2745.363612,17] [<ffffffff811e3503>] do_vfs_ioctl+0x2b3/0x4e0
[ 2745.363616,17] [<ffffffff811e3771>] SyS_ioctl+0x41/0x70
[ 2745.363619,17] [<ffffffff817c6ffe>] entry_SYSCALL_64_fastpath+0x1e/0x79
[ 2745.363622,17] ---[ end trace f6954aa440266421 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpt3sas: Fix a memory leak
Add a forgotten kfree(). |
In the Linux kernel, the following vulnerability has been resolved:
gpu: host1x: Fix memory leak of device names
The device names allocated by dev_set_name() need be freed
before module unloading, but they can not be freed because
the kobject's refcount which was set in device_initialize()
has not be decreased to 0.
As comment of device_add() says, if it fails, use only
put_device() drop the refcount, then the name will be
freed in kobejct_cleanup().
device_del() and put_device() can be replaced with
device_unregister(), so call it to unregister the added
successfully devices, and just call put_device() to the
not added device.
Add a release() function to device to avoid null release()
function WARNING in device_release(), it's empty, because
the context devices are freed together in
host1x_memory_context_list_free(). |
DigiSign DigiSigner ONE 1.0.4.60 allows DLL Hijacking. |
Storage Performance Development Kit (SPDK) 25.05 is vulnerable to Buffer Overflow in the NVMe-oF target component in SPDK - lib/nvmf. |
IMPAQTR Aurora before 1.36 allows Insecure Direct Object Reference attacks against the users list, organization details, bookmarks, and notifications of an arbitrary organization. |
TOTOLINK X18 V9.1.0cu.2053_B20230309 was discovered to contain a command injection vulnerability via the agentName parameter in the setEasyMeshAgentCfg function. |
TOTOLINK X18 V9.1.0cu.2053_B20230309 was discovered to contain a command injection vulnerability via the mac parameter in the setEasyMeshAgentCfg function. |
Cross Site Scripting (XSS) vulnerability in Fiora chat application 1.0.0 allows executes arbitrary JavaScript when malicious SVG files are rendered by other users. |
Discourse is an open-source community discussion platform. Versions 3.5.0 and below are vulnerable to XSS attacks through parsing and rendering of chat channel titles and chat thread titles via the quote message functionality when using the rich text editor. This issue is fixed in version 3.5.1. |
An issue was discovered in Django 4.2 before 4.2.25, 5.1 before 5.1.13, and 5.2 before 5.2.7. The django.utils.archive.extract() function, used by the "startapp --template" and "startproject --template" commands, allows partial directory traversal via an archive with file paths sharing a common prefix with the target directory. |
A CRLF injection vulnerability in Neto CMS v6.313.0 through v6.314.0 allows attackers to execute arbitrary code via supplying a crafted HTTP request. |
Jeecgboot versions 3.8.2 and earlier are affected by a path traversal vulnerability. This vulnerability allows attackers to upload files with system-whitelisted extensions to the system directory /opt, instead of the /opt/upFiles directory specified by the web server. |
In the Linux kernel, the following vulnerability has been resolved:
udf: Do not bother merging very long extents
When merging very long extents we try to push as much length as possible
to the first extent. However this is unnecessarily complicated and not
really worth the trouble. Furthermore there was a bug in the logic
resulting in corrupting extents in the file as syzbot reproducer shows.
So just don't bother with the merging of extents that are too long
together. |
In the Linux kernel, the following vulnerability has been resolved:
tipc: do not update mtu if msg_max is too small in mtu negotiation
When doing link mtu negotiation, a malicious peer may send Activate msg
with a very small mtu, e.g. 4 in Shuang's testing, without checking for
the minimum mtu, l->mtu will be set to 4 in tipc_link_proto_rcv(), then
n->links[bearer_id].mtu is set to 4294967228, which is a overflow of
'4 - INT_H_SIZE - EMSG_OVERHEAD' in tipc_link_mss().
With tipc_link.mtu = 4, tipc_link_xmit() kept printing the warning:
tipc: Too large msg, purging xmit list 1 5 0 40 4!
tipc: Too large msg, purging xmit list 1 15 0 60 4!
And with tipc_link_entry.mtu 4294967228, a huge skb was allocated in
named_distribute(), and when purging it in tipc_link_xmit(), a crash
was even caused:
general protection fault, probably for non-canonical address 0x2100001011000dd: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 0 Comm: swapper/0 Kdump: loaded Not tainted 6.3.0.neta #19
RIP: 0010:kfree_skb_list_reason+0x7e/0x1f0
Call Trace:
<IRQ>
skb_release_data+0xf9/0x1d0
kfree_skb_reason+0x40/0x100
tipc_link_xmit+0x57a/0x740 [tipc]
tipc_node_xmit+0x16c/0x5c0 [tipc]
tipc_named_node_up+0x27f/0x2c0 [tipc]
tipc_node_write_unlock+0x149/0x170 [tipc]
tipc_rcv+0x608/0x740 [tipc]
tipc_udp_recv+0xdc/0x1f0 [tipc]
udp_queue_rcv_one_skb+0x33e/0x620
udp_unicast_rcv_skb.isra.72+0x75/0x90
__udp4_lib_rcv+0x56d/0xc20
ip_protocol_deliver_rcu+0x100/0x2d0
This patch fixes it by checking the new mtu against tipc_bearer_min_mtu(),
and not updating mtu if it is too small. |
In the Linux kernel, the following vulnerability has been resolved:
thunderbolt: Fix memory leak in tb_handle_dp_bandwidth_request()
The memory allocated in tb_queue_dp_bandwidth_request() needs to be
released once the request is handled to avoid leaking it. |