CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
net/ieee802154: reject zero-sized raw_sendmsg()
syzbot is hitting skb_assert_len() warning at raw_sendmsg() for ieee802154
socket. What commit dc633700f00f726e ("net/af_packet: check len when
min_header_len equals to 0") does also applies to ieee802154 socket. |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: fix leaked reference count of nfsd4_ssc_umount_item
The reference count of nfsd4_ssc_umount_item is not decremented
on error conditions. This prevents the laundromat from unmounting
the vfsmount of the source file.
This patch decrements the reference count of nfsd4_ssc_umount_item
on error. |
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: dp: Only trigger DRM HPD events if bridge is attached
The MediaTek DisplayPort interface bridge driver starts its interrupts
as soon as its probed. However when the interrupts trigger the bridge
might not have been attached to a DRM device. As drm_helper_hpd_irq_event()
does not check whether the passed in drm_device is valid or not, a NULL
pointer passed in results in a kernel NULL pointer dereference in it.
Check whether the bridge is attached and only trigger an HPD event if
it is. |
In the Linux kernel, the following vulnerability has been resolved:
x86/MCE: Always save CS register on AMD Zen IF Poison errors
The Instruction Fetch (IF) units on current AMD Zen-based systems do not
guarantee a synchronous #MC is delivered for poison consumption errors.
Therefore, MCG_STATUS[EIPV|RIPV] will not be set. However, the
microarchitecture does guarantee that the exception is delivered within
the same context. In other words, the exact rIP is not known, but the
context is known to not have changed.
There is no architecturally-defined method to determine this behavior.
The Code Segment (CS) register is always valid on such IF unit poison
errors regardless of the value of MCG_STATUS[EIPV|RIPV].
Add a quirk to save the CS register for poison consumption from the IF
unit banks.
This is needed to properly determine the context of the error.
Otherwise, the severity grading function will assume the context is
IN_KERNEL due to the m->cs value being 0 (the initialized value). This
leads to unnecessary kernel panics on data poison errors due to the
kernel believing the poison consumption occurred in kernel context. |
In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix null-ptr-deref of mreplace in raid10_sync_request
There are two check of 'mreplace' in raid10_sync_request(). In the first
check, 'need_replace' will be set and 'mreplace' will be used later if
no-Faulty 'mreplace' exists, In the second check, 'mreplace' will be
set to NULL if it is Faulty, but 'need_replace' will not be changed
accordingly. null-ptr-deref occurs if Faulty is set between two check.
Fix it by merging two checks into one. And replace 'need_replace' with
'mreplace' because their values are always the same. |
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Clean dangling pointer on bind error path
mtk_drm_bind() can fail, in which case drm_dev_put() is called,
destroying the drm_device object. However a pointer to it was still
being held in the private object, and that pointer would be passed along
to DRM in mtk_drm_sys_prepare() if a suspend were triggered at that
point, resulting in a panic. Clean the pointer when destroying the
object in the error path to prevent this from happening. |
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa27x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
In the Linux kernel, the following vulnerability has been resolved:
net: If sock is dead don't access sock's sk_wq in sk_stream_wait_memory
Fixes the below NULL pointer dereference:
[...]
[ 14.471200] Call Trace:
[ 14.471562] <TASK>
[ 14.471882] lock_acquire+0x245/0x2e0
[ 14.472416] ? remove_wait_queue+0x12/0x50
[ 14.473014] ? _raw_spin_lock_irqsave+0x17/0x50
[ 14.473681] _raw_spin_lock_irqsave+0x3d/0x50
[ 14.474318] ? remove_wait_queue+0x12/0x50
[ 14.474907] remove_wait_queue+0x12/0x50
[ 14.475480] sk_stream_wait_memory+0x20d/0x340
[ 14.476127] ? do_wait_intr_irq+0x80/0x80
[ 14.476704] do_tcp_sendpages+0x287/0x600
[ 14.477283] tcp_bpf_push+0xab/0x260
[ 14.477817] tcp_bpf_sendmsg_redir+0x297/0x500
[ 14.478461] ? __local_bh_enable_ip+0x77/0xe0
[ 14.479096] tcp_bpf_send_verdict+0x105/0x470
[ 14.479729] tcp_bpf_sendmsg+0x318/0x4f0
[ 14.480311] sock_sendmsg+0x2d/0x40
[ 14.480822] ____sys_sendmsg+0x1b4/0x1c0
[ 14.481390] ? copy_msghdr_from_user+0x62/0x80
[ 14.482048] ___sys_sendmsg+0x78/0xb0
[ 14.482580] ? vmf_insert_pfn_prot+0x91/0x150
[ 14.483215] ? __do_fault+0x2a/0x1a0
[ 14.483738] ? do_fault+0x15e/0x5d0
[ 14.484246] ? __handle_mm_fault+0x56b/0x1040
[ 14.484874] ? lock_is_held_type+0xdf/0x130
[ 14.485474] ? find_held_lock+0x2d/0x90
[ 14.486046] ? __sys_sendmsg+0x41/0x70
[ 14.486587] __sys_sendmsg+0x41/0x70
[ 14.487105] ? intel_pmu_drain_pebs_core+0x350/0x350
[ 14.487822] do_syscall_64+0x34/0x80
[ 14.488345] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
The test scenario has the following flow:
thread1 thread2
----------- ---------------
tcp_bpf_sendmsg
tcp_bpf_send_verdict
tcp_bpf_sendmsg_redir sock_close
tcp_bpf_push_locked __sock_release
tcp_bpf_push //inet_release
do_tcp_sendpages sock->ops->release
sk_stream_wait_memory // tcp_close
sk_wait_event sk->sk_prot->close
release_sock(__sk);
***
lock_sock(sk);
__tcp_close
sock_orphan(sk)
sk->sk_wq = NULL
release_sock
****
lock_sock(__sk);
remove_wait_queue(sk_sleep(sk), &wait);
sk_sleep(sk)
//NULL pointer dereference
&rcu_dereference_raw(sk->sk_wq)->wait
While waiting for memory in thread1, the socket is released with its wait
queue because thread2 has closed it. This caused by tcp_bpf_send_verdict
didn't increase the f_count of psock->sk_redir->sk_socket->file in thread1.
We should check if SOCK_DEAD flag is set on wakeup in sk_stream_wait_memory
before accessing the wait queue. |
In the Linux kernel, the following vulnerability has been resolved:
mm: kmem: fix a NULL pointer dereference in obj_stock_flush_required()
KCSAN found an issue in obj_stock_flush_required():
stock->cached_objcg can be reset between the check and dereference:
==================================================================
BUG: KCSAN: data-race in drain_all_stock / drain_obj_stock
write to 0xffff888237c2a2f8 of 8 bytes by task 19625 on cpu 0:
drain_obj_stock+0x408/0x4e0 mm/memcontrol.c:3306
refill_obj_stock+0x9c/0x1e0 mm/memcontrol.c:3340
obj_cgroup_uncharge+0xe/0x10 mm/memcontrol.c:3408
memcg_slab_free_hook mm/slab.h:587 [inline]
__cache_free mm/slab.c:3373 [inline]
__do_kmem_cache_free mm/slab.c:3577 [inline]
kmem_cache_free+0x105/0x280 mm/slab.c:3602
__d_free fs/dcache.c:298 [inline]
dentry_free fs/dcache.c:375 [inline]
__dentry_kill+0x422/0x4a0 fs/dcache.c:621
dentry_kill+0x8d/0x1e0
dput+0x118/0x1f0 fs/dcache.c:913
__fput+0x3bf/0x570 fs/file_table.c:329
____fput+0x15/0x20 fs/file_table.c:349
task_work_run+0x123/0x160 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop+0xcf/0xe0 kernel/entry/common.c:171
exit_to_user_mode_prepare+0x6a/0xa0 kernel/entry/common.c:203
__syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline]
syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:296
do_syscall_64+0x4d/0xc0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff888237c2a2f8 of 8 bytes by task 19632 on cpu 1:
obj_stock_flush_required mm/memcontrol.c:3319 [inline]
drain_all_stock+0x174/0x2a0 mm/memcontrol.c:2361
try_charge_memcg+0x6d0/0xd10 mm/memcontrol.c:2703
try_charge mm/memcontrol.c:2837 [inline]
mem_cgroup_charge_skmem+0x51/0x140 mm/memcontrol.c:7290
sock_reserve_memory+0xb1/0x390 net/core/sock.c:1025
sk_setsockopt+0x800/0x1e70 net/core/sock.c:1525
udp_lib_setsockopt+0x99/0x6c0 net/ipv4/udp.c:2692
udp_setsockopt+0x73/0xa0 net/ipv4/udp.c:2817
sock_common_setsockopt+0x61/0x70 net/core/sock.c:3668
__sys_setsockopt+0x1c3/0x230 net/socket.c:2271
__do_sys_setsockopt net/socket.c:2282 [inline]
__se_sys_setsockopt net/socket.c:2279 [inline]
__x64_sys_setsockopt+0x66/0x80 net/socket.c:2279
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0xffff8881382d52c0 -> 0xffff888138893740
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 19632 Comm: syz-executor.0 Not tainted 6.3.0-rc2-syzkaller-00387-g534293368afa #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023
Fix it by using READ_ONCE()/WRITE_ONCE() for all accesses to
stock->cached_objcg. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: Fix Oops by 9.1 surround channel names
get_line_out_pfx() may trigger an Oops by overflowing the static array
with more than 8 channels. This was reported for MacBookPro 12,1 with
Cirrus codec.
As a workaround, extend for the 9.1 channels and also fix the
potential Oops by unifying the code paths accessing the same array
with the proper size check. |
In the Linux kernel, the following vulnerability has been resolved:
drm: bridge: adv7511: unregister cec i2c device after cec adapter
cec_unregister_adapter() assumes that the underlying adapter ops are
callable. For example, if the CEC adapter currently has a valid physical
address, then the unregistration procedure will invalidate the physical
address by setting it to f.f.f.f. Whence the following kernel oops
observed after removing the adv7511 module:
Unable to handle kernel execution of user memory at virtual address 0000000000000000
Internal error: Oops: 86000004 [#1] PREEMPT_RT SMP
Call trace:
0x0
adv7511_cec_adap_log_addr+0x1ac/0x1c8 [adv7511]
cec_adap_unconfigure+0x44/0x90 [cec]
__cec_s_phys_addr.part.0+0x68/0x230 [cec]
__cec_s_phys_addr+0x40/0x50 [cec]
cec_unregister_adapter+0xb4/0x118 [cec]
adv7511_remove+0x60/0x90 [adv7511]
i2c_device_remove+0x34/0xe0
device_release_driver_internal+0x114/0x1f0
driver_detach+0x54/0xe0
bus_remove_driver+0x60/0xd8
driver_unregister+0x34/0x60
i2c_del_driver+0x2c/0x68
adv7511_exit+0x1c/0x67c [adv7511]
__arm64_sys_delete_module+0x154/0x288
invoke_syscall+0x48/0x100
el0_svc_common.constprop.0+0x48/0xe8
do_el0_svc+0x28/0x88
el0_svc+0x1c/0x50
el0t_64_sync_handler+0xa8/0xb0
el0t_64_sync+0x15c/0x160
Code: bad PC value
---[ end trace 0000000000000000 ]---
Protect against this scenario by unregistering i2c_cec after
unregistering the CEC adapter. Duly disable the CEC clock afterwards
too. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: xsk: Fix crash on regular rq reactivation
When the regular rq is reactivated after the XSK socket is closed
it could be reading stale cqes which eventually corrupts the rq.
This leads to no more traffic being received on the regular rq and a
crash on the next close or deactivation of the rq.
Kal Cuttler Conely reported this issue as a crash on the release
path when the xdpsock sample program is stopped (killed) and restarted
in sequence while traffic is running.
This patch flushes all cqes when during the rq flush. The cqe flushing
is done in the reset state of the rq. mlx5e_rq_to_ready code is moved
into the flush function to allow for this. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix possible memory leak if device_add() fails
If device_add() returns error, the name allocated by dev_set_name() needs
be freed. As the comment of device_add() says, put_device() should be used
to give up the reference in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanp(). |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix NULL pointer dereference in smb2_get_info_filesystem()
If share is , share->path is NULL and it cause NULL pointer
dereference issue. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: dma: fix memory leak running mt76_dma_tx_cleanup
Fix device unregister memory leak and alway cleanup all configured
rx queues in mt76_dma_tx_cleanup routine. |
In the Linux kernel, the following vulnerability has been resolved:
PCI/ASPM: Disable ASPM on MFD function removal to avoid use-after-free
Struct pcie_link_state->downstream is a pointer to the pci_dev of function
0. Previously we retained that pointer when removing function 0, and
subsequent ASPM policy changes dereferenced it, resulting in a
use-after-free warning from KASAN, e.g.:
# echo 1 > /sys/bus/pci/devices/0000:03:00.0/remove
# echo powersave > /sys/module/pcie_aspm/parameters/policy
BUG: KASAN: slab-use-after-free in pcie_config_aspm_link+0x42d/0x500
Call Trace:
kasan_report+0xae/0xe0
pcie_config_aspm_link+0x42d/0x500
pcie_aspm_set_policy+0x8e/0x1a0
param_attr_store+0x162/0x2c0
module_attr_store+0x3e/0x80
PCIe spec r6.0, sec 7.5.3.7, recommends that software program the same ASPM
Control value in all functions of multi-function devices.
Disable ASPM and free the pcie_link_state when any child function is
removed so we can discard the dangling pcie_link_state->downstream pointer
and maintain the same ASPM Control configuration for all functions.
[bhelgaas: commit log and comment] |
In the Linux kernel, the following vulnerability has been resolved:
powercap: arm_scmi: Remove recursion while parsing zones
Powercap zones can be defined as arranged in a hierarchy of trees and when
registering a zone with powercap_register_zone(), the kernel powercap
subsystem expects this to happen starting from the root zones down to the
leaves; on the other side, de-registration by powercap_deregister_zone()
must begin from the leaf zones.
Available SCMI powercap zones are retrieved dynamically from the platform
at probe time and, while any defined hierarchy between the zones is
described properly in the zones descriptor, the platform returns the
availables zones with no particular well-defined order: as a consequence,
the trees possibly composing the hierarchy of zones have to be somehow
walked properly to register the retrieved zones from the root.
Currently the ARM SCMI Powercap driver walks the zones using a recursive
algorithm; this approach, even though correct and tested can lead to kernel
stack overflow when processing a returned hierarchy of zones composed by
particularly high trees.
Avoid possible kernel stack overflow by substituting the recursive approach
with an iterative one supported by a dynamically allocated stack-like data
structure. |
In the Linux kernel, the following vulnerability has been resolved:
crypto: seqiv - Handle EBUSY correctly
As it is seqiv only handles the special return value of EINPROGERSS,
which means that in all other cases it will free data related to the
request.
However, as the caller of seqiv may specify MAY_BACKLOG, we also need
to expect EBUSY and treat it in the same way. Otherwise backlogged
requests will trigger a use-after-free. |
In the Linux kernel, the following vulnerability has been resolved:
net/smc: Reset connection when trying to use SMCRv2 fails.
We found a crash when using SMCRv2 with 2 Mellanox ConnectX-4. It
can be reproduced by:
- smc_run nginx
- smc_run wrk -t 32 -c 500 -d 30 http://<ip>:<port>
BUG: kernel NULL pointer dereference, address: 0000000000000014
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 8000000108713067 P4D 8000000108713067 PUD 151127067 PMD 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 4 PID: 2441 Comm: kworker/4:249 Kdump: loaded Tainted: G W E 6.4.0-rc1+ #42
Workqueue: smc_hs_wq smc_listen_work [smc]
RIP: 0010:smc_clc_send_confirm_accept+0x284/0x580 [smc]
RSP: 0018:ffffb8294b2d7c78 EFLAGS: 00010a06
RAX: ffff8f1873238880 RBX: ffffb8294b2d7dc8 RCX: 0000000000000000
RDX: 00000000000000b4 RSI: 0000000000000001 RDI: 0000000000b40c00
RBP: ffffb8294b2d7db8 R08: ffff8f1815c5860c R09: 0000000000000000
R10: 0000000000000400 R11: 0000000000000000 R12: ffff8f1846f56180
R13: ffff8f1815c5860c R14: 0000000000000001 R15: 0000000000000001
FS: 0000000000000000(0000) GS:ffff8f1aefd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000014 CR3: 00000001027a0001 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? mlx5_ib_map_mr_sg+0xa1/0xd0 [mlx5_ib]
? smcr_buf_map_link+0x24b/0x290 [smc]
? __smc_buf_create+0x4ee/0x9b0 [smc]
smc_clc_send_accept+0x4c/0xb0 [smc]
smc_listen_work+0x346/0x650 [smc]
? __schedule+0x279/0x820
process_one_work+0x1e5/0x3f0
worker_thread+0x4d/0x2f0
? __pfx_worker_thread+0x10/0x10
kthread+0xe5/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK>
During the CLC handshake, server sequentially tries available SMCRv2
and SMCRv1 devices in smc_listen_work().
If an SMCRv2 device is found. SMCv2 based link group and link will be
assigned to the connection. Then assumed that some buffer assignment
errors happen later in the CLC handshake, such as RMB registration
failure, server will give up SMCRv2 and try SMCRv1 device instead. But
the resources assigned to the connection won't be reset.
When server tries SMCRv1 device, the connection creation process will
be executed again. Since conn->lnk has been assigned when trying SMCRv2,
it will not be set to the correct SMCRv1 link in
smcr_lgr_conn_assign_link(). So in such situation, conn->lgr points to
correct SMCRv1 link group but conn->lnk points to the SMCRv2 link
mistakenly.
Then in smc_clc_send_confirm_accept(), conn->rmb_desc->mr[link->link_idx]
will be accessed. Since the link->link_idx is not correct, the related
MR may not have been initialized, so crash happens.
| Try SMCRv2 device first
| |-> conn->lgr: assign existed SMCRv2 link group;
| |-> conn->link: assign existed SMCRv2 link (link_idx may be 1 in SMC_LGR_SYMMETRIC);
| |-> sndbuf & RMB creation fails, quit;
|
| Try SMCRv1 device then
| |-> conn->lgr: create SMCRv1 link group and assign;
| |-> conn->link: keep SMCRv2 link mistakenly;
| |-> sndbuf & RMB creation succeed, only RMB->mr[link_idx = 0]
| initialized.
|
| Then smc_clc_send_confirm_accept() accesses
| conn->rmb_desc->mr[conn->link->link_idx, which is 1], then crash.
v
This patch tries to fix this by cleaning conn->lnk before assigning
link. In addition, it is better to reset the connection and clean the
resources assigned if trying SMCRv2 failed in buffer creation or
registration. |
In the Linux kernel, the following vulnerability has been resolved:
mfd: arizona: Use pm_runtime_resume_and_get() to prevent refcnt leak
In arizona_clk32k_enable(), we should use pm_runtime_resume_and_get()
as pm_runtime_get_sync() will increase the refcnt even when it
returns an error. |