CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock when aborting transaction during relocation with scrub
Before relocating a block group we pause scrub, then do the relocation and
then unpause scrub. The relocation process requires starting and committing
a transaction, and if we have a failure in the critical section of the
transaction commit path (transaction state >= TRANS_STATE_COMMIT_START),
we will deadlock if there is a paused scrub.
That results in stack traces like the following:
[42.479] BTRFS info (device sdc): relocating block group 53876686848 flags metadata|raid6
[42.936] BTRFS warning (device sdc): Skipping commit of aborted transaction.
[42.936] ------------[ cut here ]------------
[42.936] BTRFS: Transaction aborted (error -28)
[42.936] WARNING: CPU: 11 PID: 346822 at fs/btrfs/transaction.c:1977 btrfs_commit_transaction+0xcc8/0xeb0 [btrfs]
[42.936] Modules linked in: dm_flakey dm_mod loop btrfs (...)
[42.936] CPU: 11 PID: 346822 Comm: btrfs Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1
[42.936] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[42.936] RIP: 0010:btrfs_commit_transaction+0xcc8/0xeb0 [btrfs]
[42.936] Code: ff ff 45 8b (...)
[42.936] RSP: 0018:ffffb58649633b48 EFLAGS: 00010282
[42.936] RAX: 0000000000000000 RBX: ffff8be6ef4d5bd8 RCX: 0000000000000000
[42.936] RDX: 0000000000000002 RSI: ffffffffb35e7782 RDI: 00000000ffffffff
[42.936] RBP: ffff8be6ef4d5c98 R08: 0000000000000000 R09: ffffb586496339e8
[42.936] R10: 0000000000000001 R11: 0000000000000001 R12: ffff8be6d38c7c00
[42.936] R13: 00000000ffffffe4 R14: ffff8be6c268c000 R15: ffff8be6ef4d5cf0
[42.936] FS: 00007f381a82b340(0000) GS:ffff8beddfcc0000(0000) knlGS:0000000000000000
[42.936] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[42.936] CR2: 00007f1e35fb7638 CR3: 0000000117680006 CR4: 0000000000370ee0
[42.936] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[42.936] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[42.936] Call Trace:
[42.936] <TASK>
[42.936] ? start_transaction+0xcb/0x610 [btrfs]
[42.936] prepare_to_relocate+0x111/0x1a0 [btrfs]
[42.936] relocate_block_group+0x57/0x5d0 [btrfs]
[42.936] ? btrfs_wait_nocow_writers+0x25/0xb0 [btrfs]
[42.936] btrfs_relocate_block_group+0x248/0x3c0 [btrfs]
[42.936] ? __pfx_autoremove_wake_function+0x10/0x10
[42.936] btrfs_relocate_chunk+0x3b/0x150 [btrfs]
[42.936] btrfs_balance+0x8ff/0x11d0 [btrfs]
[42.936] ? __kmem_cache_alloc_node+0x14a/0x410
[42.936] btrfs_ioctl+0x2334/0x32c0 [btrfs]
[42.937] ? mod_objcg_state+0xd2/0x360
[42.937] ? refill_obj_stock+0xb0/0x160
[42.937] ? seq_release+0x25/0x30
[42.937] ? __rseq_handle_notify_resume+0x3b5/0x4b0
[42.937] ? percpu_counter_add_batch+0x2e/0xa0
[42.937] ? __x64_sys_ioctl+0x88/0xc0
[42.937] __x64_sys_ioctl+0x88/0xc0
[42.937] do_syscall_64+0x38/0x90
[42.937] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[42.937] RIP: 0033:0x7f381a6ffe9b
[42.937] Code: 00 48 89 44 24 (...)
[42.937] RSP: 002b:00007ffd45ecf060 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[42.937] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f381a6ffe9b
[42.937] RDX: 00007ffd45ecf150 RSI: 00000000c4009420 RDI: 0000000000000003
[42.937] RBP: 0000000000000003 R08: 0000000000000013 R09: 0000000000000000
[42.937] R10: 00007f381a60c878 R11: 0000000000000246 R12: 00007ffd45ed0423
[42.937] R13: 00007ffd45ecf150 R14: 0000000000000000 R15: 00007ffd45ecf148
[42.937] </TASK>
[42.937] ---[ end trace 0000000000000000 ]---
[42.937] BTRFS: error (device sdc: state A) in cleanup_transaction:1977: errno=-28 No space left
[59.196] INFO: task btrfs:346772 blocked for more than 120 seconds.
[59.196] Tainted: G W 6.3.0-rc2-btrfs-next-127+ #1
[59.196] "echo 0 > /proc/sys/kernel/hung_
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
accel/qaic: Fix slicing memory leak
The temporary buffer storing slicing configuration data from user is only
freed on error. This is a memory leak. Free the buffer unconditionally. |
In the Linux kernel, the following vulnerability has been resolved:
block: be a bit more careful in checking for NULL bdev while polling
Wei reports a crash with an application using polled IO:
PGD 14265e067 P4D 14265e067 PUD 47ec50067 PMD 0
Oops: 0000 [#1] SMP
CPU: 0 PID: 21915 Comm: iocore_0 Kdump: loaded Tainted: G S 5.12.0-0_fbk12_clang_7346_g1bb6f2e7058f #1
Hardware name: Wiwynn Delta Lake MP T8/Delta Lake-Class2, BIOS Y3DLM08 04/10/2022
RIP: 0010:bio_poll+0x25/0x200
Code: 0f 1f 44 00 00 0f 1f 44 00 00 55 41 57 41 56 41 55 41 54 53 48 83 ec 28 65 48 8b 04 25 28 00 00 00 48 89 44 24 20 48 8b 47 08 <48> 8b 80 70 02 00 00 4c 8b 70 50 8b 6f 34 31 db 83 fd ff 75 25 65
RSP: 0018:ffffc90005fafdf8 EFLAGS: 00010292
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 74b43cd65dd66600
RDX: 0000000000000003 RSI: ffffc90005fafe78 RDI: ffff8884b614e140
RBP: ffff88849964df78 R08: 0000000000000000 R09: 0000000000000008
R10: 0000000000000000 R11: 0000000000000000 R12: ffff88849964df00
R13: ffffc90005fafe78 R14: ffff888137d3c378 R15: 0000000000000001
FS: 00007fd195000640(0000) GS:ffff88903f400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000270 CR3: 0000000466121001 CR4: 00000000007706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
iocb_bio_iopoll+0x1d/0x30
io_do_iopoll+0xac/0x250
__se_sys_io_uring_enter+0x3c5/0x5a0
? __x64_sys_write+0x89/0xd0
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x94f225d
Code: 24 cc 00 00 00 41 8b 84 24 d0 00 00 00 c1 e0 04 83 e0 10 41 09 c2 8b 33 8b 53 04 4c 8b 43 18 4c 63 4b 0c b8 aa 01 00 00 0f 05 <85> c0 0f 88 85 00 00 00 29 03 45 84 f6 0f 84 88 00 00 00 41 f6 c7
RSP: 002b:00007fd194ffcd88 EFLAGS: 00000202 ORIG_RAX: 00000000000001aa
RAX: ffffffffffffffda RBX: 00007fd194ffcdc0 RCX: 00000000094f225d
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000007
RBP: 00007fd194ffcdb0 R08: 0000000000000000 R09: 0000000000000008
R10: 0000000000000001 R11: 0000000000000202 R12: 00007fd269d68030
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000000
which is due to bio->bi_bdev being NULL. This can happen if we have two
tasks doing polled IO, and task B ends up completing IO from task A if
they are sharing a poll queue. If task B completes the IO and puts the
bio into our cache, then it can allocate that bio again before task A
is done polling for it. As that would necessitate a preempt between the
two tasks, it's enough to just be a bit more careful in checking for
whether or not bio->bi_bdev is NULL. |
In the Linux kernel, the following vulnerability has been resolved:
fs: dlm: fix race in lowcomms
This patch fixes a race between queue_work() in
_dlm_lowcomms_commit_msg() and srcu_read_unlock(). The queue_work() can
take the final reference of a dlm_msg and so msg->idx can contain
garbage which is signaled by the following warning:
[ 676.237050] ------------[ cut here ]------------
[ 676.237052] WARNING: CPU: 0 PID: 1060 at include/linux/srcu.h:189 dlm_lowcomms_commit_msg+0x41/0x50
[ 676.238945] Modules linked in: dlm_locktorture torture rpcsec_gss_krb5 intel_rapl_msr intel_rapl_common iTCO_wdt iTCO_vendor_support qxl kvm_intel drm_ttm_helper vmw_vsock_virtio_transport kvm vmw_vsock_virtio_transport_common ttm irqbypass crc32_pclmul joydev crc32c_intel serio_raw drm_kms_helper vsock virtio_scsi virtio_console virtio_balloon snd_pcm drm syscopyarea sysfillrect sysimgblt snd_timer fb_sys_fops i2c_i801 lpc_ich snd i2c_smbus soundcore pcspkr
[ 676.244227] CPU: 0 PID: 1060 Comm: lock_torture_wr Not tainted 5.19.0-rc3+ #1546
[ 676.245216] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-2.module+el8.7.0+15506+033991b0 04/01/2014
[ 676.246460] RIP: 0010:dlm_lowcomms_commit_msg+0x41/0x50
[ 676.247132] Code: fe ff ff ff 75 24 48 c7 c6 bd 0f 49 bb 48 c7 c7 38 7c 01 bd e8 00 e7 ca ff 89 de 48 c7 c7 60 78 01 bd e8 42 3d cd ff 5b 5d c3 <0f> 0b eb d8 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48
[ 676.249253] RSP: 0018:ffffa401c18ffc68 EFLAGS: 00010282
[ 676.249855] RAX: 0000000000000001 RBX: 00000000ffff8b76 RCX: 0000000000000006
[ 676.250713] RDX: 0000000000000000 RSI: ffffffffbccf3a10 RDI: ffffffffbcc7b62e
[ 676.251610] RBP: ffffa401c18ffc70 R08: 0000000000000001 R09: 0000000000000001
[ 676.252481] R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000005
[ 676.253421] R13: ffff8b76786ec370 R14: ffff8b76786ec370 R15: ffff8b76786ec480
[ 676.254257] FS: 0000000000000000(0000) GS:ffff8b7777800000(0000) knlGS:0000000000000000
[ 676.255239] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 676.255897] CR2: 00005590205d88b8 CR3: 000000017656c003 CR4: 0000000000770ee0
[ 676.256734] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 676.257567] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 676.258397] PKRU: 55555554
[ 676.258729] Call Trace:
[ 676.259063] <TASK>
[ 676.259354] dlm_midcomms_commit_mhandle+0xcc/0x110
[ 676.259964] queue_bast+0x8b/0xb0
[ 676.260423] grant_pending_locks+0x166/0x1b0
[ 676.261007] _unlock_lock+0x75/0x90
[ 676.261469] unlock_lock.isra.57+0x62/0xa0
[ 676.262009] dlm_unlock+0x21e/0x330
[ 676.262457] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 676.263183] torture_unlock+0x5a/0x90 [dlm_locktorture]
[ 676.263815] ? preempt_count_sub+0xba/0x100
[ 676.264361] ? complete+0x1d/0x60
[ 676.264777] lock_torture_writer+0xb8/0x150 [dlm_locktorture]
[ 676.265555] kthread+0x10a/0x130
[ 676.266007] ? kthread_complete_and_exit+0x20/0x20
[ 676.266616] ret_from_fork+0x22/0x30
[ 676.267097] </TASK>
[ 676.267381] irq event stamp: 9579855
[ 676.267824] hardirqs last enabled at (9579863): [<ffffffffbb14e6f8>] __up_console_sem+0x58/0x60
[ 676.268896] hardirqs last disabled at (9579872): [<ffffffffbb14e6dd>] __up_console_sem+0x3d/0x60
[ 676.270008] softirqs last enabled at (9579798): [<ffffffffbc200349>] __do_softirq+0x349/0x4c7
[ 676.271438] softirqs last disabled at (9579897): [<ffffffffbb0d54c0>] irq_exit_rcu+0xb0/0xf0
[ 676.272796] ---[ end trace 0000000000000000 ]---
I reproduced this warning with dlm_locktorture test which is currently
not upstream. However this patch fix the issue by make a additional
refcount between dlm_lowcomms_new_msg() and dlm_lowcomms_commit_msg().
In case of the race the kref_put() in dlm_lowcomms_commit_msg() will be
the final put. |
Server-Side Request Forgery (SSRF) vulnerability in Ghost allows an attacker to access internal resources.This issue affects Ghost: from 6.0.0 through 6.0.8, from 5.99.0 through 5.130.3. |
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: core: fix some leaks in probe
The dwc3_get_properties() function calls:
dwc->usb_psy = power_supply_get_by_name(usb_psy_name);
so there is some additional clean up required on these error paths. |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dp: fix aux-bus EP lifetime
Device-managed resources allocated post component bind must be tied to
the lifetime of the aggregate DRM device or they will not necessarily be
released when binding of the aggregate device is deferred.
This can lead resource leaks or failure to bind the aggregate device
when binding is later retried and a second attempt to allocate the
resources is made.
For the DP aux-bus, an attempt to populate the bus a second time will
simply fail ("DP AUX EP device already populated").
Fix this by tying the lifetime of the EP device to the DRM device rather
than DP controller platform device.
Patchwork: https://patchwork.freedesktop.org/patch/502672/ |
In the Linux kernel, the following vulnerability has been resolved:
i2c: mux: reg: check return value after calling platform_get_resource()
It will cause null-ptr-deref in resource_size(), if platform_get_resource()
returns NULL, move calling resource_size() after devm_ioremap_resource() that
will check 'res' to avoid null-ptr-deref.
And use devm_platform_get_and_ioremap_resource() to simplify code. |
In the Linux kernel, the following vulnerability has been resolved:
fs: fix UAF/GPF bug in nilfs_mdt_destroy
In alloc_inode, inode_init_always() could return -ENOMEM if
security_inode_alloc() fails, which causes inode->i_private
uninitialized. Then nilfs_is_metadata_file_inode() returns
true and nilfs_free_inode() wrongly calls nilfs_mdt_destroy(),
which frees the uninitialized inode->i_private
and leads to crashes(e.g., UAF/GPF).
Fix this by moving security_inode_alloc just prior to
this_cpu_inc(nr_inodes) |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dsi: fix memory corruption with too many bridges
Add the missing sanity check on the bridge counter to avoid corrupting
data beyond the fixed-sized bridge array in case there are ever more
than eight bridges.
Patchwork: https://patchwork.freedesktop.org/patch/502668/ |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_{ldisc,serdev}: check percpu_init_rwsem() failure
syzbot is reporting NULL pointer dereference at hci_uart_tty_close() [1],
for rcu_sync_enter() is called without rcu_sync_init() due to
hci_uart_tty_open() ignoring percpu_init_rwsem() failure.
While we are at it, fix that hci_uart_register_device() ignores
percpu_init_rwsem() failure and hci_uart_unregister_device() does not
call percpu_free_rwsem(). |
CISA Thorium does not escape user controlled strings used in LDAP queries. An authenticated remote attacker can modify LDAP authorization data such as group memberships. Fixed in 1.1.1. |
CISA Thorium does not rate limit requests to send account verification email messages. A remote unauthenticated attacker can send unlimited messages to a user who is pending verification. Fixed in 1.1.1 by adding a rate limit set by default to 10 minutes. |
CISA Thorium does not properly invalidate previously used tokens when resetting passwords. An attacker that possesses a previously used token could still log in after a password reset. Fixed in 1.1.1. |
CISA Thorium uses '.unwrap()' to handle errors related to account verification email messages. An unauthenticated remote attacker could cause a crash by providing a specially crafted email address or response. Fixed in commit 6a65a27. |
CISA Thorium does not adequately validate the paths of downloaded files via 'download_ephemeral' and 'download_children'. A remote, authenticated attacker could access arbitrary files subject to file system permissions. Fixed in 1.1.2. |
CISA Thorium does not validate TLS certificates when connecting to Elasticsearch. An unauthenticated attacker with access to a Thorium cluster could impersonate the Elasticsearch service. Fixed in 1.1.2. |
WonderCMS 3.5.0 is vulnerable to Server-Side Request Forgery (SSRF) in the custom module installation functionality. An authenticated administrator can supply a malicious URL via the pluginThemeUrl POST parameter. The server fetches the provided URL using curl_exec() without sufficient validation, allowing the attacker to force internal or external HTTP requests. |
ZimaOS is a fork of CasaOS, an operating system for Zima devices and x86-64 systems with UEFI. In version 1.4.1 and all prior versions, the /v2_1/files/file/uploadV2 endpoint allows file upload from ANY USER who has access to localhost. File uploads are performed AS ROOT. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/vm: Clear the scratch_pt pointer on error
Avoid triggering a dereference of an error pointer on cleanup in
xe_vm_free_scratch() by clearing any scratch_pt error pointer.
(cherry picked from commit 358ee50ab565f3c8ea32480e9d03127a81ba32f8) |