CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ipmr: fix kernel panic when forwarding mcast packets
The stacktrace was:
[ 86.305548] BUG: kernel NULL pointer dereference, address: 0000000000000092
[ 86.306815] #PF: supervisor read access in kernel mode
[ 86.307717] #PF: error_code(0x0000) - not-present page
[ 86.308624] PGD 0 P4D 0
[ 86.309091] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 86.309883] CPU: 2 PID: 3139 Comm: pimd Tainted: G U 6.8.0-6wind-knet #1
[ 86.311027] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.1-0-g0551a4be2c-prebuilt.qemu-project.org 04/01/2014
[ 86.312728] RIP: 0010:ip_mr_forward (/build/work/knet/net/ipv4/ipmr.c:1985)
[ 86.313399] Code: f9 1f 0f 87 85 03 00 00 48 8d 04 5b 48 8d 04 83 49 8d 44 c5 00 48 8b 40 70 48 39 c2 0f 84 d9 00 00 00 49 8b 46 58 48 83 e0 fe <80> b8 92 00 00 00 00 0f 84 55 ff ff ff 49 83 47 38 01 45 85 e4 0f
[ 86.316565] RSP: 0018:ffffad21c0583ae0 EFLAGS: 00010246
[ 86.317497] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 86.318596] RDX: ffff9559cb46c000 RSI: 0000000000000000 RDI: 0000000000000000
[ 86.319627] RBP: ffffad21c0583b30 R08: 0000000000000000 R09: 0000000000000000
[ 86.320650] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001
[ 86.321672] R13: ffff9559c093a000 R14: ffff9559cc00b800 R15: ffff9559c09c1d80
[ 86.322873] FS: 00007f85db661980(0000) GS:ffff955a79d00000(0000) knlGS:0000000000000000
[ 86.324291] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 86.325314] CR2: 0000000000000092 CR3: 000000002f13a000 CR4: 0000000000350ef0
[ 86.326589] Call Trace:
[ 86.327036] <TASK>
[ 86.327434] ? show_regs (/build/work/knet/arch/x86/kernel/dumpstack.c:479)
[ 86.328049] ? __die (/build/work/knet/arch/x86/kernel/dumpstack.c:421 /build/work/knet/arch/x86/kernel/dumpstack.c:434)
[ 86.328508] ? page_fault_oops (/build/work/knet/arch/x86/mm/fault.c:707)
[ 86.329107] ? do_user_addr_fault (/build/work/knet/arch/x86/mm/fault.c:1264)
[ 86.329756] ? srso_return_thunk (/build/work/knet/arch/x86/lib/retpoline.S:223)
[ 86.330350] ? __irq_work_queue_local (/build/work/knet/kernel/irq_work.c:111 (discriminator 1))
[ 86.331013] ? exc_page_fault (/build/work/knet/./arch/x86/include/asm/paravirt.h:693 /build/work/knet/arch/x86/mm/fault.c:1515 /build/work/knet/arch/x86/mm/fault.c:1563)
[ 86.331702] ? asm_exc_page_fault (/build/work/knet/./arch/x86/include/asm/idtentry.h:570)
[ 86.332468] ? ip_mr_forward (/build/work/knet/net/ipv4/ipmr.c:1985)
[ 86.333183] ? srso_return_thunk (/build/work/knet/arch/x86/lib/retpoline.S:223)
[ 86.333920] ipmr_mfc_add (/build/work/knet/./include/linux/rcupdate.h:782 /build/work/knet/net/ipv4/ipmr.c:1009 /build/work/knet/net/ipv4/ipmr.c:1273)
[ 86.334583] ? __pfx_ipmr_hash_cmp (/build/work/knet/net/ipv4/ipmr.c:363)
[ 86.335357] ip_mroute_setsockopt (/build/work/knet/net/ipv4/ipmr.c:1470)
[ 86.336135] ? srso_return_thunk (/build/work/knet/arch/x86/lib/retpoline.S:223)
[ 86.336854] ? ip_mroute_setsockopt (/build/work/knet/net/ipv4/ipmr.c:1470)
[ 86.337679] do_ip_setsockopt (/build/work/knet/net/ipv4/ip_sockglue.c:944)
[ 86.338408] ? __pfx_unix_stream_read_actor (/build/work/knet/net/unix/af_unix.c:2862)
[ 86.339232] ? srso_return_thunk (/build/work/knet/arch/x86/lib/retpoline.S:223)
[ 86.339809] ? aa_sk_perm (/build/work/knet/security/apparmor/include/cred.h:153 /build/work/knet/security/apparmor/net.c:181)
[ 86.340342] ip_setsockopt (/build/work/knet/net/ipv4/ip_sockglue.c:1415)
[ 86.340859] raw_setsockopt (/build/work/knet/net/ipv4/raw.c:836)
[ 86.341408] ? security_socket_setsockopt (/build/work/knet/security/security.c:4561 (discriminator 13))
[ 86.342116] sock_common_setsockopt (/build/work/knet/net/core/sock.c:3716)
[ 86.342747] do_sock_setsockopt (/build/work/knet/net/socket.c:2313)
[ 86.343363] __sys_setsockopt (/build/work/knet/./include/linux/file.h:32 /build/work/kn
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
pds_core: Prevent race issues involving the adminq
There are multiple paths that can result in using the pdsc's
adminq.
[1] pdsc_adminq_isr and the resulting work from queue_work(),
i.e. pdsc_work_thread()->pdsc_process_adminq()
[2] pdsc_adminq_post()
When the device goes through reset via PCIe reset and/or
a fw_down/fw_up cycle due to bad PCIe state or bad device
state the adminq is destroyed and recreated.
A NULL pointer dereference can happen if [1] or [2] happens
after the adminq is already destroyed.
In order to fix this, add some further state checks and
implement reference counting for adminq uses. Reference
counting was used because multiple threads can attempt to
access the adminq at the same time via [1] or [2]. Additionally,
multiple clients (i.e. pds-vfio-pci) can be using [2]
at the same time.
The adminq_refcnt is initialized to 1 when the adminq has been
allocated and is ready to use. Users/clients of the adminq
(i.e. [1] and [2]) will increment the refcnt when they are using
the adminq. When the driver goes into a fw_down cycle it will
set the PDSC_S_FW_DEAD bit and then wait for the adminq_refcnt
to hit 1. Setting the PDSC_S_FW_DEAD before waiting will prevent
any further adminq_refcnt increments. Waiting for the
adminq_refcnt to hit 1 allows for any current users of the adminq
to finish before the driver frees the adminq. Once the
adminq_refcnt hits 1 the driver clears the refcnt to signify that
the adminq is deleted and cannot be used. On the fw_up cycle the
driver will once again initialize the adminq_refcnt to 1 allowing
the adminq to be used again. |
In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix illegal rmb_desc access in SMC-D connection dump
A crash was found when dumping SMC-D connections. It can be reproduced
by following steps:
- run nginx/wrk test:
smc_run nginx
smc_run wrk -t 16 -c 1000 -d <duration> -H 'Connection: Close' <URL>
- continuously dump SMC-D connections in parallel:
watch -n 1 'smcss -D'
BUG: kernel NULL pointer dereference, address: 0000000000000030
CPU: 2 PID: 7204 Comm: smcss Kdump: loaded Tainted: G E 6.7.0+ #55
RIP: 0010:__smc_diag_dump.constprop.0+0x5e5/0x620 [smc_diag]
Call Trace:
<TASK>
? __die+0x24/0x70
? page_fault_oops+0x66/0x150
? exc_page_fault+0x69/0x140
? asm_exc_page_fault+0x26/0x30
? __smc_diag_dump.constprop.0+0x5e5/0x620 [smc_diag]
? __kmalloc_node_track_caller+0x35d/0x430
? __alloc_skb+0x77/0x170
smc_diag_dump_proto+0xd0/0xf0 [smc_diag]
smc_diag_dump+0x26/0x60 [smc_diag]
netlink_dump+0x19f/0x320
__netlink_dump_start+0x1dc/0x300
smc_diag_handler_dump+0x6a/0x80 [smc_diag]
? __pfx_smc_diag_dump+0x10/0x10 [smc_diag]
sock_diag_rcv_msg+0x121/0x140
? __pfx_sock_diag_rcv_msg+0x10/0x10
netlink_rcv_skb+0x5a/0x110
sock_diag_rcv+0x28/0x40
netlink_unicast+0x22a/0x330
netlink_sendmsg+0x1f8/0x420
__sock_sendmsg+0xb0/0xc0
____sys_sendmsg+0x24e/0x300
? copy_msghdr_from_user+0x62/0x80
___sys_sendmsg+0x7c/0xd0
? __do_fault+0x34/0x160
? do_read_fault+0x5f/0x100
? do_fault+0xb0/0x110
? __handle_mm_fault+0x2b0/0x6c0
__sys_sendmsg+0x4d/0x80
do_syscall_64+0x69/0x180
entry_SYSCALL_64_after_hwframe+0x6e/0x76
It is possible that the connection is in process of being established
when we dump it. Assumed that the connection has been registered in a
link group by smc_conn_create() but the rmb_desc has not yet been
initialized by smc_buf_create(), thus causing the illegal access to
conn->rmb_desc. So fix it by checking before dump. |
In the Linux kernel, the following vulnerability has been resolved:
netfs, fscache: Prevent Oops in fscache_put_cache()
This function dereferences "cache" and then checks if it's
IS_ERR_OR_NULL(). Check first, then dereference. |
In the Linux kernel, the following vulnerability has been resolved:
xsk: fix usage of multi-buffer BPF helpers for ZC XDP
Currently when packet is shrunk via bpf_xdp_adjust_tail() and memory
type is set to MEM_TYPE_XSK_BUFF_POOL, null ptr dereference happens:
[1136314.192256] BUG: kernel NULL pointer dereference, address:
0000000000000034
[1136314.203943] #PF: supervisor read access in kernel mode
[1136314.213768] #PF: error_code(0x0000) - not-present page
[1136314.223550] PGD 0 P4D 0
[1136314.230684] Oops: 0000 [#1] PREEMPT SMP NOPTI
[1136314.239621] CPU: 8 PID: 54203 Comm: xdpsock Not tainted 6.6.0+ #257
[1136314.250469] Hardware name: Intel Corporation S2600WFT/S2600WFT,
BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019
[1136314.265615] RIP: 0010:__xdp_return+0x6c/0x210
[1136314.274653] Code: ad 00 48 8b 47 08 49 89 f8 a8 01 0f 85 9b 01 00 00 0f 1f 44 00 00 f0 41 ff 48 34 75 32 4c 89 c7 e9 79 cd 80 ff 83 fe 03 75 17 <f6> 41 34 01 0f 85 02 01 00 00 48 89 cf e9 22 cc 1e 00 e9 3d d2 86
[1136314.302907] RSP: 0018:ffffc900089f8db0 EFLAGS: 00010246
[1136314.312967] RAX: ffffc9003168aed0 RBX: ffff8881c3300000 RCX:
0000000000000000
[1136314.324953] RDX: 0000000000000000 RSI: 0000000000000003 RDI:
ffffc9003168c000
[1136314.336929] RBP: 0000000000000ae0 R08: 0000000000000002 R09:
0000000000010000
[1136314.348844] R10: ffffc9000e495000 R11: 0000000000000040 R12:
0000000000000001
[1136314.360706] R13: 0000000000000524 R14: ffffc9003168aec0 R15:
0000000000000001
[1136314.373298] FS: 00007f8df8bbcb80(0000) GS:ffff8897e0e00000(0000)
knlGS:0000000000000000
[1136314.386105] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1136314.396532] CR2: 0000000000000034 CR3: 00000001aa912002 CR4:
00000000007706f0
[1136314.408377] DR0: 0000000000000000 DR1: 0000000000000000 DR2:
0000000000000000
[1136314.420173] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:
0000000000000400
[1136314.431890] PKRU: 55555554
[1136314.439143] Call Trace:
[1136314.446058] <IRQ>
[1136314.452465] ? __die+0x20/0x70
[1136314.459881] ? page_fault_oops+0x15b/0x440
[1136314.468305] ? exc_page_fault+0x6a/0x150
[1136314.476491] ? asm_exc_page_fault+0x22/0x30
[1136314.484927] ? __xdp_return+0x6c/0x210
[1136314.492863] bpf_xdp_adjust_tail+0x155/0x1d0
[1136314.501269] bpf_prog_ccc47ae29d3b6570_xdp_sock_prog+0x15/0x60
[1136314.511263] ice_clean_rx_irq_zc+0x206/0xc60 [ice]
[1136314.520222] ? ice_xmit_zc+0x6e/0x150 [ice]
[1136314.528506] ice_napi_poll+0x467/0x670 [ice]
[1136314.536858] ? ttwu_do_activate.constprop.0+0x8f/0x1a0
[1136314.546010] __napi_poll+0x29/0x1b0
[1136314.553462] net_rx_action+0x133/0x270
[1136314.561619] __do_softirq+0xbe/0x28e
[1136314.569303] do_softirq+0x3f/0x60
This comes from __xdp_return() call with xdp_buff argument passed as
NULL which is supposed to be consumed by xsk_buff_free() call.
To address this properly, in ZC case, a node that represents the frag
being removed has to be pulled out of xskb_list. Introduce
appropriate xsk helpers to do such node operation and use them
accordingly within bpf_xdp_adjust_tail(). |
In the Linux kernel, the following vulnerability has been resolved:
drm/bridge: sii902x: Fix probing race issue
A null pointer dereference crash has been observed rarely on TI
platforms using sii9022 bridge:
[ 53.271356] sii902x_get_edid+0x34/0x70 [sii902x]
[ 53.276066] sii902x_bridge_get_edid+0x14/0x20 [sii902x]
[ 53.281381] drm_bridge_get_edid+0x20/0x34 [drm]
[ 53.286305] drm_bridge_connector_get_modes+0x8c/0xcc [drm_kms_helper]
[ 53.292955] drm_helper_probe_single_connector_modes+0x190/0x538 [drm_kms_helper]
[ 53.300510] drm_client_modeset_probe+0x1f0/0xbd4 [drm]
[ 53.305958] __drm_fb_helper_initial_config_and_unlock+0x50/0x510 [drm_kms_helper]
[ 53.313611] drm_fb_helper_initial_config+0x48/0x58 [drm_kms_helper]
[ 53.320039] drm_fbdev_dma_client_hotplug+0x84/0xd4 [drm_dma_helper]
[ 53.326401] drm_client_register+0x5c/0xa0 [drm]
[ 53.331216] drm_fbdev_dma_setup+0xc8/0x13c [drm_dma_helper]
[ 53.336881] tidss_probe+0x128/0x264 [tidss]
[ 53.341174] platform_probe+0x68/0xc4
[ 53.344841] really_probe+0x188/0x3c4
[ 53.348501] __driver_probe_device+0x7c/0x16c
[ 53.352854] driver_probe_device+0x3c/0x10c
[ 53.357033] __device_attach_driver+0xbc/0x158
[ 53.361472] bus_for_each_drv+0x88/0xe8
[ 53.365303] __device_attach+0xa0/0x1b4
[ 53.369135] device_initial_probe+0x14/0x20
[ 53.373314] bus_probe_device+0xb0/0xb4
[ 53.377145] deferred_probe_work_func+0xcc/0x124
[ 53.381757] process_one_work+0x1f0/0x518
[ 53.385770] worker_thread+0x1e8/0x3dc
[ 53.389519] kthread+0x11c/0x120
[ 53.392750] ret_from_fork+0x10/0x20
The issue here is as follows:
- tidss probes, but is deferred as sii902x is still missing.
- sii902x starts probing and enters sii902x_init().
- sii902x calls drm_bridge_add(). Now the sii902x bridge is ready from
DRM's perspective.
- sii902x calls sii902x_audio_codec_init() and
platform_device_register_data()
- The registration of the audio platform device causes probing of the
deferred devices.
- tidss probes, which eventually causes sii902x_bridge_get_edid() to be
called.
- sii902x_bridge_get_edid() tries to use the i2c to read the edid.
However, the sii902x driver has not set up the i2c part yet, leading
to the crash.
Fix this by moving the drm_bridge_add() to the end of the
sii902x_init(), which is also at the very end of sii902x_probe(). |
In the Linux kernel, the following vulnerability has been resolved:
Revert "kobject: Remove redundant checks for whether ktype is NULL"
This reverts commit 1b28cb81dab7c1eedc6034206f4e8d644046ad31.
It is reported to cause problems, so revert it for now until the root
cause can be found. |
In the Linux kernel, the following vulnerability has been resolved:
phy: ti: phy-omap-usb2: Fix NULL pointer dereference for SRP
If the external phy working together with phy-omap-usb2 does not implement
send_srp(), we may still attempt to call it. This can happen on an idle
Ethernet gadget triggering a wakeup for example:
configfs-gadget.g1 gadget.0: ECM Suspend
configfs-gadget.g1 gadget.0: Port suspended. Triggering wakeup
...
Unable to handle kernel NULL pointer dereference at virtual address
00000000 when execute
...
PC is at 0x0
LR is at musb_gadget_wakeup+0x1d4/0x254 [musb_hdrc]
...
musb_gadget_wakeup [musb_hdrc] from usb_gadget_wakeup+0x1c/0x3c [udc_core]
usb_gadget_wakeup [udc_core] from eth_start_xmit+0x3b0/0x3d4 [u_ether]
eth_start_xmit [u_ether] from dev_hard_start_xmit+0x94/0x24c
dev_hard_start_xmit from sch_direct_xmit+0x104/0x2e4
sch_direct_xmit from __dev_queue_xmit+0x334/0xd88
__dev_queue_xmit from arp_solicit+0xf0/0x268
arp_solicit from neigh_probe+0x54/0x7c
neigh_probe from __neigh_event_send+0x22c/0x47c
__neigh_event_send from neigh_resolve_output+0x14c/0x1c0
neigh_resolve_output from ip_finish_output2+0x1c8/0x628
ip_finish_output2 from ip_send_skb+0x40/0xd8
ip_send_skb from udp_send_skb+0x124/0x340
udp_send_skb from udp_sendmsg+0x780/0x984
udp_sendmsg from __sys_sendto+0xd8/0x158
__sys_sendto from ret_fast_syscall+0x0/0x58
Let's fix the issue by checking for send_srp() and set_vbus() before
calling them. For USB peripheral only cases these both could be NULL. |
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix NULL pointer dereference in error path
When calling mlxsw_sp_acl_tcam_region_destroy() from an error path after
failing to attach the region to an ACL group, we hit a NULL pointer
dereference upon 'region->group->tcam' [1].
Fix by retrieving the 'tcam' pointer using mlxsw_sp_acl_to_tcam().
[1]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
RIP: 0010:mlxsw_sp_acl_tcam_region_destroy+0xa0/0xd0
[...]
Call Trace:
mlxsw_sp_acl_tcam_vchunk_get+0x88b/0xa20
mlxsw_sp_acl_tcam_ventry_add+0x25/0xe0
mlxsw_sp_acl_rule_add+0x47/0x240
mlxsw_sp_flower_replace+0x1a9/0x1d0
tc_setup_cb_add+0xdc/0x1c0
fl_hw_replace_filter+0x146/0x1f0
fl_change+0xc17/0x1360
tc_new_tfilter+0x472/0xb90
rtnetlink_rcv_msg+0x313/0x3b0
netlink_rcv_skb+0x58/0x100
netlink_unicast+0x244/0x390
netlink_sendmsg+0x1e4/0x440
____sys_sendmsg+0x164/0x260
___sys_sendmsg+0x9a/0xe0
__sys_sendmsg+0x7a/0xc0
do_syscall_64+0x40/0xe0
entry_SYSCALL_64_after_hwframe+0x63/0x6b |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix re-attachment branch in bpf_tracing_prog_attach
The following case can cause a crash due to missing attach_btf:
1) load rawtp program
2) load fentry program with rawtp as target_fd
3) create tracing link for fentry program with target_fd = 0
4) repeat 3
In the end we have:
- prog->aux->dst_trampoline == NULL
- tgt_prog == NULL (because we did not provide target_fd to link_create)
- prog->aux->attach_btf == NULL (the program was loaded with attach_prog_fd=X)
- the program was loaded for tgt_prog but we have no way to find out which one
BUG: kernel NULL pointer dereference, address: 0000000000000058
Call Trace:
<TASK>
? __die+0x20/0x70
? page_fault_oops+0x15b/0x430
? fixup_exception+0x22/0x330
? exc_page_fault+0x6f/0x170
? asm_exc_page_fault+0x22/0x30
? bpf_tracing_prog_attach+0x279/0x560
? btf_obj_id+0x5/0x10
bpf_tracing_prog_attach+0x439/0x560
__sys_bpf+0x1cf4/0x2de0
__x64_sys_bpf+0x1c/0x30
do_syscall_64+0x41/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Return -EINVAL in this situation. |
In the Linux kernel, the following vulnerability has been resolved:
erofs: fix inconsistent per-file compression format
EROFS can select compression algorithms on a per-file basis, and each
per-file compression algorithm needs to be marked in the on-disk
superblock for initialization.
However, syzkaller can generate inconsistent crafted images that use
an unsupported algorithmtype for specific inodes, e.g. use MicroLZMA
algorithmtype even it's not set in `sbi->available_compr_algs`. This
can lead to an unexpected "BUG: kernel NULL pointer dereference" if
the corresponding decompressor isn't built-in.
Fix this by checking against `sbi->available_compr_algs` for each
m_algorithmformat request. Incorrect !erofs_sb_has_compr_cfgs preset
bitmap is now fixed together since it was harmless previously. |
In the Linux kernel, the following vulnerability has been resolved:
net: netdevsim: don't try to destroy PHC on VFs
PHC gets initialized in nsim_init_netdevsim(), which
is only called if (nsim_dev_port_is_pf()).
Create a counterpart of nsim_init_netdevsim() and
move the mock_phc_destroy() there.
This fixes a crash trying to destroy netdevsim with
VFs instantiated, as caught by running the devlink.sh test:
BUG: kernel NULL pointer dereference, address: 00000000000000b8
RIP: 0010:mock_phc_destroy+0xd/0x30
Call Trace:
<TASK>
nsim_destroy+0x4a/0x70 [netdevsim]
__nsim_dev_port_del+0x47/0x70 [netdevsim]
nsim_dev_reload_destroy+0x105/0x120 [netdevsim]
nsim_drv_remove+0x2f/0xb0 [netdevsim]
device_release_driver_internal+0x1a1/0x210
bus_remove_device+0xd5/0x120
device_del+0x159/0x490
device_unregister+0x12/0x30
del_device_store+0x11a/0x1a0 [netdevsim]
kernfs_fop_write_iter+0x130/0x1d0
vfs_write+0x30b/0x4b0
ksys_write+0x69/0xf0
do_syscall_64+0xcc/0x1e0
entry_SYSCALL_64_after_hwframe+0x6f/0x77 |
In the Linux kernel, the following vulnerability has been resolved:
reset: uniphier-glue: Fix possible null-ptr-deref
It will cause null-ptr-deref when resource_size(res) invoked,
if platform_get_resource() returns NULL. |
In the Linux kernel, the following vulnerability has been resolved:
phy: usb: sunplus: Fix potential null-ptr-deref in sp_usb_phy_probe()
sp_usb_phy_probe() will call platform_get_resource_byname() that may fail
and return NULL. devm_ioremap() will use usbphy->moon4_res_mem->start as
input, which may causes null-ptr-deref. Check the ret value of
platform_get_resource_byname() to avoid the null-ptr-deref. |
In the Linux kernel, the following vulnerability has been resolved:
ata: libata-core: fix NULL pointer deref in ata_host_alloc_pinfo()
In an unlikely (and probably wrong?) case that the 'ppi' parameter of
ata_host_alloc_pinfo() points to an array starting with a NULL pointer,
there's going to be a kernel oops as the 'pi' local variable won't get
reassigned from the initial value of NULL. Initialize 'pi' instead to
'&ata_dummy_port_info' to fix the possible kernel oops for good...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Resolve NULL ptr dereference after an ELS LOGO is aborted
A use-after-free crash can occur after an ELS LOGO is aborted.
Specifically, a nodelist structure is freed and then
ndlp->vport->cfg_log_verbose is dereferenced in lpfc_nlp_get() when the
discovery state machine is mistakenly called a second time with
NLP_EVT_DEVICE_RM argument.
Rework lpfc_cmpl_els_logo() to prevent the duplicate calls to release a
nodelist structure. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: add reserved GDT blocks check
We capture a NULL pointer issue when resizing a corrupt ext4 image which
is freshly clear resize_inode feature (not run e2fsck). It could be
simply reproduced by following steps. The problem is because of the
resize_inode feature was cleared, and it will convert the filesystem to
meta_bg mode in ext4_resize_fs(), but the es->s_reserved_gdt_blocks was
not reduced to zero, so could we mistakenly call reserve_backup_gdb()
and passing an uninitialized resize_inode to it when adding new group
descriptors.
mkfs.ext4 /dev/sda 3G
tune2fs -O ^resize_inode /dev/sda #forget to run requested e2fsck
mount /dev/sda /mnt
resize2fs /dev/sda 8G
========
BUG: kernel NULL pointer dereference, address: 0000000000000028
CPU: 19 PID: 3243 Comm: resize2fs Not tainted 5.18.0-rc7-00001-gfde086c5ebfd #748
...
RIP: 0010:ext4_flex_group_add+0xe08/0x2570
...
Call Trace:
<TASK>
ext4_resize_fs+0xbec/0x1660
__ext4_ioctl+0x1749/0x24e0
ext4_ioctl+0x12/0x20
__x64_sys_ioctl+0xa6/0x110
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f2dd739617b
========
The fix is simple, add a check in ext4_resize_begin() to make sure that
the es->s_reserved_gdt_blocks is zero when the resize_inode feature is
disabled. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ibmvfc: Store vhost pointer during subcrq allocation
Currently the back pointer from a queue to the vhost adapter isn't set
until after subcrq interrupt registration. The value is available when a
queue is first allocated and can/should be also set for primary and async
queues as well as subcrqs.
This fixes a crash observed during kexec/kdump on Power 9 with legacy XICS
interrupt controller where a pending subcrq interrupt from the previous
kernel can be replayed immediately upon IRQ registration resulting in
dereference of a garbage backpointer in ibmvfc_interrupt_scsi().
Kernel attempted to read user page (58) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000058
Faulting instruction address: 0xc008000003216a08
Oops: Kernel access of bad area, sig: 11 [#1]
...
NIP [c008000003216a08] ibmvfc_interrupt_scsi+0x40/0xb0 [ibmvfc]
LR [c0000000082079e8] __handle_irq_event_percpu+0x98/0x270
Call Trace:
[c000000047fa3d80] [c0000000123e6180] 0xc0000000123e6180 (unreliable)
[c000000047fa3df0] [c0000000082079e8] __handle_irq_event_percpu+0x98/0x270
[c000000047fa3ea0] [c000000008207d18] handle_irq_event+0x98/0x188
[c000000047fa3ef0] [c00000000820f564] handle_fasteoi_irq+0xc4/0x310
[c000000047fa3f40] [c000000008205c60] generic_handle_irq+0x50/0x80
[c000000047fa3f60] [c000000008015c40] __do_irq+0x70/0x1a0
[c000000047fa3f90] [c000000008016d7c] __do_IRQ+0x9c/0x130
[c000000014622f60] [0000000020000000] 0x20000000
[c000000014622ff0] [c000000008016e50] do_IRQ+0x40/0xa0
[c000000014623020] [c000000008017044] replay_soft_interrupts+0x194/0x2f0
[c000000014623210] [c0000000080172a8] arch_local_irq_restore+0x108/0x170
[c000000014623240] [c000000008eb1008] _raw_spin_unlock_irqrestore+0x58/0xb0
[c000000014623270] [c00000000820b12c] __setup_irq+0x49c/0x9f0
[c000000014623310] [c00000000820b7c0] request_threaded_irq+0x140/0x230
[c000000014623380] [c008000003212a50] ibmvfc_register_scsi_channel+0x1e8/0x2f0 [ibmvfc]
[c000000014623450] [c008000003213d1c] ibmvfc_init_sub_crqs+0xc4/0x1f0 [ibmvfc]
[c0000000146234d0] [c0080000032145a8] ibmvfc_reset_crq+0x150/0x210 [ibmvfc]
[c000000014623550] [c0080000032147c8] ibmvfc_init_crq+0x160/0x280 [ibmvfc]
[c0000000146235f0] [c00800000321a9cc] ibmvfc_probe+0x2a4/0x530 [ibmvfc] |
In the Linux kernel, the following vulnerability has been resolved:
net: phy: at803x: fix NULL pointer dereference on AR9331 PHY
Latest kernel will explode on the PHY interrupt config, since it depends
now on allocated priv. So, run probe to allocate priv to fix it.
ar9331_switch ethernet.1:10 lan0 (uninitialized): PHY [!ahb!ethernet@1a000000!mdio!switch@10:00] driver [Qualcomm Atheros AR9331 built-in PHY] (irq=13)
CPU 0 Unable to handle kernel paging request at virtual address 0000000a, epc == 8050e8a8, ra == 80504b34
...
Call Trace:
[<8050e8a8>] at803x_config_intr+0x5c/0xd0
[<80504b34>] phy_request_interrupt+0xa8/0xd0
[<8050289c>] phylink_bringup_phy+0x2d8/0x3ac
[<80502b68>] phylink_fwnode_phy_connect+0x118/0x130
[<8074d8ec>] dsa_slave_create+0x270/0x420
[<80743b04>] dsa_port_setup+0x12c/0x148
[<8074580c>] dsa_register_switch+0xaf0/0xcc0
[<80511344>] ar9331_sw_probe+0x370/0x388
[<8050cb78>] mdio_probe+0x44/0x70
[<804df300>] really_probe+0x200/0x424
[<804df7b4>] __driver_probe_device+0x290/0x298
[<804df810>] driver_probe_device+0x54/0xe4
[<804dfd50>] __device_attach_driver+0xe4/0x130
[<804dcb00>] bus_for_each_drv+0xb4/0xd8
[<804dfac4>] __device_attach+0x104/0x1a4
[<804ddd24>] bus_probe_device+0x48/0xc4
[<804deb44>] deferred_probe_work_func+0xf0/0x10c
[<800a0ffc>] process_one_work+0x314/0x4d4
[<800a17fc>] worker_thread+0x2a4/0x354
[<800a9a54>] kthread+0x134/0x13c
[<8006306c>] ret_from_kernel_thread+0x14/0x1c
Same Issue would affect some other PHYs (QCA8081, QCA9561), so fix it
too. |
In the Linux kernel, the following vulnerability has been resolved:
xen/netback: avoid entering xenvif_rx_next_skb() with an empty rx queue
xenvif_rx_next_skb() is expecting the rx queue not being empty, but
in case the loop in xenvif_rx_action() is doing multiple iterations,
the availability of another skb in the rx queue is not being checked.
This can lead to crashes:
[40072.537261] BUG: unable to handle kernel NULL pointer dereference at 0000000000000080
[40072.537407] IP: xenvif_rx_skb+0x23/0x590 [xen_netback]
[40072.537534] PGD 0 P4D 0
[40072.537644] Oops: 0000 [#1] SMP NOPTI
[40072.537749] CPU: 0 PID: 12505 Comm: v1-c40247-q2-gu Not tainted 4.12.14-122.121-default #1 SLE12-SP5
[40072.537867] Hardware name: HP ProLiant DL580 Gen9/ProLiant DL580 Gen9, BIOS U17 11/23/2021
[40072.537999] task: ffff880433b38100 task.stack: ffffc90043d40000
[40072.538112] RIP: e030:xenvif_rx_skb+0x23/0x590 [xen_netback]
[40072.538217] RSP: e02b:ffffc90043d43de0 EFLAGS: 00010246
[40072.538319] RAX: 0000000000000000 RBX: ffffc90043cd7cd0 RCX: 00000000000000f7
[40072.538430] RDX: 0000000000000000 RSI: 0000000000000006 RDI: ffffc90043d43df8
[40072.538531] RBP: 000000000000003f R08: 000077ff80000000 R09: 0000000000000008
[40072.538644] R10: 0000000000007ff0 R11: 00000000000008f6 R12: ffffc90043ce2708
[40072.538745] R13: 0000000000000000 R14: ffffc90043d43ed0 R15: ffff88043ea748c0
[40072.538861] FS: 0000000000000000(0000) GS:ffff880484600000(0000) knlGS:0000000000000000
[40072.538988] CS: e033 DS: 0000 ES: 0000 CR0: 0000000080050033
[40072.539088] CR2: 0000000000000080 CR3: 0000000407ac8000 CR4: 0000000000040660
[40072.539211] Call Trace:
[40072.539319] xenvif_rx_action+0x71/0x90 [xen_netback]
[40072.539429] xenvif_kthread_guest_rx+0x14a/0x29c [xen_netback]
Fix that by stopping the loop in case the rx queue becomes empty. |