| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability was identified in D-Link DIR-852 up to 1.00CN B09. Affected by this vulnerability is the function phpcgi_main of the file /getcfg.php of the component Device Configuration Handler. Such manipulation leads to information disclosure. The attack may be performed from remote. The exploit is publicly available and might be used. This vulnerability only affects products that are no longer supported by the maintainer. |
| Vulnerability in the OPC UA .NET Standard Stack before 1.5.374.158 allows an unauthorized attacker to bypass application authentication when the deprecated Basic128Rsa15 security policy is enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: oss: Fix negative period/buffer sizes
The period size calculation in OSS layer may receive a negative value
as an error, but the code there assumes only the positive values and
handle them with size_t. Due to that, a too big value may be passed
to the lower layers.
This patch changes the code to handle with ssize_t and adds the proper
error checks appropriately. |
| Insertion of Sensitive Information Into Sent Data vulnerability in Benjamin Intal Stackable allows Retrieve Embedded Sensitive Data. This issue affects Stackable: from n/a through 3.18.1. |
| Improper input validation in firmware for some Intel(R) PROSet/Wireless Software and Intel(R) Killer(TM) Wi-Fi wireless products before version 23.40 may allow an unauthenticated user to enable denial of service via adjacent access. |
| UrBackup Server 2.5.31 allows brute-force enumeration of user accounts because a failure message confirms that a username is not valid. |
| DNN (formerly DotNetNuke) is an open-source web content management platform (CMS) in the Microsoft ecosystem. Prior to version 10.1.0, arbitrary themes can be loaded through query parameters. If an installed theme had a vulnerability, even if it was not used on any page, this could be loaded on unsuspecting clients without knowledge of the site owner. This issue has been patched in version 10.1.0. |
| Insertion of Sensitive Information Into Sent Data vulnerability in thetechtribe The Tribal allows Retrieve Embedded Sensitive Data. This issue affects The Tribal: from n/a through 1.3.3. |
| Insertion of Sensitive Information Into Sent Data vulnerability in themelooks FoodBook allows Retrieve Embedded Sensitive Data. This issue affects FoodBook: from n/a through 4.7.1. |
| Insertion of Sensitive Information Into Sent Data vulnerability in Vimesoft Information Technologies and Software Inc. Vimesoft Corporate Messaging Platform allows Retrieve Embedded Sensitive Data.This issue affects Vimesoft Corporate Messaging Platform: from V1.3.0 before V2.0.0. |
| Zulip server provides an open-source team chat that helps teams stay productive and focused. Zulip Server 7.0 and above are vulnerable to an information disclose attack, where, if a Zulip server is hosting multiple organizations, an unauthenticated user can make a request and determine if an email address is in use by a user. Zulip Server 9.4 resolves the issue, as does the `main` branch of Zulip Server. Users are advised to upgrade. There are no known workarounds for this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: fix sleeping function called from invalid context at print message
Address a bug in the kernel that triggers a "sleeping function called from
invalid context" warning when /sys/kernel/debug/kmemleak is printed under
specific conditions:
- CONFIG_PREEMPT_RT=y
- Set SELinux as the LSM for the system
- Set kptr_restrict to 1
- kmemleak buffer contains at least one item
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 136, name: cat
preempt_count: 1, expected: 0
RCU nest depth: 2, expected: 2
6 locks held by cat/136:
#0: ffff32e64bcbf950 (&p->lock){+.+.}-{3:3}, at: seq_read_iter+0xb8/0xe30
#1: ffffafe6aaa9dea0 (scan_mutex){+.+.}-{3:3}, at: kmemleak_seq_start+0x34/0x128
#3: ffff32e6546b1cd0 (&object->lock){....}-{2:2}, at: kmemleak_seq_show+0x3c/0x1e0
#4: ffffafe6aa8d8560 (rcu_read_lock){....}-{1:2}, at: has_ns_capability_noaudit+0x8/0x1b0
#5: ffffafe6aabbc0f8 (notif_lock){+.+.}-{2:2}, at: avc_compute_av+0xc4/0x3d0
irq event stamp: 136660
hardirqs last enabled at (136659): [<ffffafe6a80fd7a0>] _raw_spin_unlock_irqrestore+0xa8/0xd8
hardirqs last disabled at (136660): [<ffffafe6a80fd85c>] _raw_spin_lock_irqsave+0x8c/0xb0
softirqs last enabled at (0): [<ffffafe6a5d50b28>] copy_process+0x11d8/0x3df8
softirqs last disabled at (0): [<0000000000000000>] 0x0
Preemption disabled at:
[<ffffafe6a6598a4c>] kmemleak_seq_show+0x3c/0x1e0
CPU: 1 UID: 0 PID: 136 Comm: cat Tainted: G E 6.11.0-rt7+ #34
Tainted: [E]=UNSIGNED_MODULE
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xa0/0x128
show_stack+0x1c/0x30
dump_stack_lvl+0xe8/0x198
dump_stack+0x18/0x20
rt_spin_lock+0x8c/0x1a8
avc_perm_nonode+0xa0/0x150
cred_has_capability.isra.0+0x118/0x218
selinux_capable+0x50/0x80
security_capable+0x7c/0xd0
has_ns_capability_noaudit+0x94/0x1b0
has_capability_noaudit+0x20/0x30
restricted_pointer+0x21c/0x4b0
pointer+0x298/0x760
vsnprintf+0x330/0xf70
seq_printf+0x178/0x218
print_unreferenced+0x1a4/0x2d0
kmemleak_seq_show+0xd0/0x1e0
seq_read_iter+0x354/0xe30
seq_read+0x250/0x378
full_proxy_read+0xd8/0x148
vfs_read+0x190/0x918
ksys_read+0xf0/0x1e0
__arm64_sys_read+0x70/0xa8
invoke_syscall.constprop.0+0xd4/0x1d8
el0_svc+0x50/0x158
el0t_64_sync+0x17c/0x180
%pS and %pK, in the same back trace line, are redundant, and %pS can void
%pK service in certain contexts.
%pS alone already provides the necessary information, and if it cannot
resolve the symbol, it falls back to printing the raw address voiding
the original intent behind the %pK.
Additionally, %pK requires a privilege check CAP_SYSLOG enforced through
the LSM, which can trigger a "sleeping function called from invalid
context" warning under RT_PREEMPT kernels when the check occurs in an
atomic context. This issue may also affect other LSMs.
This change avoids the unnecessary privilege check and resolves the
sleeping function warning without any loss of information. |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: support encoding fid from inode with no alias
Dmitry Safonov reported that a WARN_ON() assertion can be trigered by
userspace when calling inotify_show_fdinfo() for an overlayfs watched
inode, whose dentry aliases were discarded with drop_caches.
The WARN_ON() assertion in inotify_show_fdinfo() was removed, because
it is possible for encoding file handle to fail for other reason, but
the impact of failing to encode an overlayfs file handle goes beyond
this assertion.
As shown in the LTP test case mentioned in the link below, failure to
encode an overlayfs file handle from a non-aliased inode also leads to
failure to report an fid with FAN_DELETE_SELF fanotify events.
As Dmitry notes in his analyzis of the problem, ovl_encode_fh() fails
if it cannot find an alias for the inode, but this failure can be fixed.
ovl_encode_fh() seldom uses the alias and in the case of non-decodable
file handles, as is often the case with fanotify fid info,
ovl_encode_fh() never needs to use the alias to encode a file handle.
Defer finding an alias until it is actually needed so ovl_encode_fh()
will not fail in the common case of FAN_DELETE_SELF fanotify events. |
| A vulnerability was found in GuanxingLu vlarl up to 31abc0baf53ef8f5db666a1c882e1ea64def2997. This vulnerability affects the function experiments.robot.bridge.reasoning_server::run_reasoning_server of the file experiments/robot/bridge/reasoning_server.py of the component ZeroMQ. Performing manipulation of the argument Message results in deserialization. Remote exploitation of the attack is possible. The exploit has been made public and could be used. This product follows a rolling release approach for continuous delivery, so version details for affected or updated releases are not provided. |
| A vulnerability has been found in giantspatula SewKinect up to 7fd963ceb3385af3706af02b8a128a13399dffb1. This affects the function pickle.loads of the file /calculate of the component Endpoint. Such manipulation of the argument body_parts/point_cloud leads to deserialization. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. This product operates on a rolling release basis, ensuring continuous delivery. Consequently, there are no version details for either affected or updated releases. |
| A security vulnerability has been detected in LazyAGI LazyLLM up to 0.6.1. Affected by this issue is the function lazyllm_call of the file lazyllm/components/deploy/relay/server.py. Such manipulation leads to deserialization. The attack can be launched remotely. The exploit has been disclosed publicly and may be used. |
| Any project that parses untrusted Protocol Buffers data containing an arbitrary number of nested groups / series of SGROUP tags can corrupted by exceeding the stack limit i.e. StackOverflow. Parsing nested groups as unknown fields with DiscardUnknownFieldsParser or Java Protobuf Lite parser, or against Protobuf map fields, creates unbounded recursions that can be abused by an attacker. |
| Zohocorp ManageEngine Analytics Plus versions below 6100 are vulnerable to authenticated sensitive data exposure which allows the users to retrieve sensitive tokens associated to the org-admin account. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix out_fput in iommufd_fault_alloc()
As fput() calls the file->f_op->release op, where fault obj and ictx are
getting released, there is no need to release these two after fput() one
more time, which would result in imbalanced refcounts:
refcount_t: decrement hit 0; leaking memory.
WARNING: CPU: 48 PID: 2369 at lib/refcount.c:31 refcount_warn_saturate+0x60/0x230
Call trace:
refcount_warn_saturate+0x60/0x230 (P)
refcount_warn_saturate+0x60/0x230 (L)
iommufd_fault_fops_release+0x9c/0xe0 [iommufd]
...
VFS: Close: file count is 0 (f_op=iommufd_fops [iommufd])
WARNING: CPU: 48 PID: 2369 at fs/open.c:1507 filp_flush+0x3c/0xf0
Call trace:
filp_flush+0x3c/0xf0 (P)
filp_flush+0x3c/0xf0 (L)
__arm64_sys_close+0x34/0x98
...
imbalanced put on file reference count
WARNING: CPU: 48 PID: 2369 at fs/file.c:74 __file_ref_put+0x100/0x138
Call trace:
__file_ref_put+0x100/0x138 (P)
__file_ref_put+0x100/0x138 (L)
__fput_sync+0x4c/0xd0
Drop those two lines to fix the warnings above. |
| In the Linux kernel, the following vulnerability has been resolved:
fork: do not invoke uffd on fork if error occurs
Patch series "fork: do not expose incomplete mm on fork".
During fork we may place the virtual memory address space into an
inconsistent state before the fork operation is complete.
In addition, we may encounter an error during the fork operation that
indicates that the virtual memory address space is invalidated.
As a result, we should not be exposing it in any way to external machinery
that might interact with the mm or VMAs, machinery that is not designed to
deal with incomplete state.
We specifically update the fork logic to defer khugepaged and ksm to the
end of the operation and only to be invoked if no error arose, and
disallow uffd from observing fork events should an error have occurred.
This patch (of 2):
Currently on fork we expose the virtual address space of a process to
userland unconditionally if uffd is registered in VMAs, regardless of
whether an error arose in the fork.
This is performed in dup_userfaultfd_complete() which is invoked
unconditionally, and performs two duties - invoking registered handlers
for the UFFD_EVENT_FORK event via dup_fctx(), and clearing down
userfaultfd_fork_ctx objects established in dup_userfaultfd().
This is problematic, because the virtual address space may not yet be
correctly initialised if an error arose.
The change in commit d24062914837 ("fork: use __mt_dup() to duplicate
maple tree in dup_mmap()") makes this more pertinent as we may be in a
state where entries in the maple tree are not yet consistent.
We address this by, on fork error, ensuring that we roll back state that
we would otherwise expect to clean up through the event being handled by
userland and perform the memory freeing duty otherwise performed by
dup_userfaultfd_complete().
We do this by implementing a new function, dup_userfaultfd_fail(), which
performs the same loop, only decrementing reference counts.
Note that we perform mmgrab() on the parent and child mm's, however
userfaultfd_ctx_put() will mmdrop() this once the reference count drops to
zero, so we will avoid memory leaks correctly here. |