CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
An out-of-bounds write issue was addressed with improved input validation. This issue is fixed in iOS 15.6 and iPadOS 15.6, watchOS 8.7, tvOS 15.6, macOS Monterey 12.5, Safari 15.6. Processing maliciously crafted web content may lead to arbitrary code execution. |
A memory corruption issue was addressed with improved state management. This issue is fixed in tvOS 15.5, watchOS 8.6, iOS 15.5 and iPadOS 15.5, macOS Monterey 12.4, Safari 15.5. Processing maliciously crafted web content may lead to code execution. |
A use after free issue was addressed with improved memory management. This issue is fixed in macOS Monterey 12.3, iOS 15.4 and iPadOS 15.4, tvOS 15.4, Safari 15.4. Processing maliciously crafted web content may lead to arbitrary code execution. |
An internal reference count is held on the buffer pool, incremented every time a new buffer is created from the pool. The reference count is maintained as an int; on LP64 systems this can cause the reference count to overflow if the client creates a large number of wl_shm buffer objects, or if it can coerce the server to create a large number of external references to the buffer storage. With the reference count overflowing, a use-after-free can be constructed on the wl_shm_pool tracking structure, where values may be incremented or decremented; it may also be possible to construct a limited oracle to leak 4 bytes of server-side memory to the attacking client at a time. |
It was discovered that the cls_route filter implementation in the Linux kernel would not remove an old filter from the hashtable before freeing it if its handle had the value 0. |
Memory safety bugs present in Firefox 121, Firefox ESR 115.6, and Thunderbird 115.6. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 122, Firefox ESR < 115.7, and Thunderbird < 115.7. |
A phishing site could have repurposed an `about:` dialog to show phishing content with an incorrect origin in the address bar. This vulnerability affects Firefox < 122 and Thunderbird < 115.7. |
When a parent page loaded a child in an iframe with `unsafe-inline`, the parent Content Security Policy could have overridden the child Content Security Policy. This vulnerability affects Firefox < 122, Firefox ESR < 115.7, and Thunderbird < 115.7. |
A logic issue was addressed with improved state management. This issue is fixed in macOS Monterey 12.3, Safari 15.4, watchOS 8.5, iOS 15.4 and iPadOS 15.4, tvOS 15.4. A malicious website may cause unexpected cross-origin behavior. |
A use after free issue was addressed with improved memory management. This issue is fixed in macOS Monterey 12.3, Safari 15.4, watchOS 8.5, iOS 15.4 and iPadOS 15.4, tvOS 15.4. Processing maliciously crafted web content may lead to arbitrary code execution. |
A buffer overflow issue was addressed with improved memory handling. This issue is fixed in macOS Monterey 12.3, Safari 15.4, watchOS 8.5, iTunes 12.12.3 for Windows, iOS 15.4 and iPadOS 15.4, tvOS 15.4. Processing maliciously crafted web content may lead to arbitrary code execution. |
CGI::Cookie.parse in Ruby through 2.6.8 mishandles security prefixes in cookie names. This also affects the CGI gem through 0.3.0 for Ruby. |
EDK2's Network Package is susceptible to an infinite lop vulnerability when parsing a PadN option in the Destination Options header of IPv6. This
vulnerability can be exploited by an attacker to gain unauthorized
access and potentially lead to a loss of Availability. |
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix a suspicious RCU usage warning
I received the following warning while running cthon against an ontap
server running pNFS:
[ 57.202521] =============================
[ 57.202522] WARNING: suspicious RCU usage
[ 57.202523] 6.7.0-rc3-g2cc14f52aeb7 #41492 Not tainted
[ 57.202525] -----------------------------
[ 57.202525] net/sunrpc/xprtmultipath.c:349 RCU-list traversed in non-reader section!!
[ 57.202527]
other info that might help us debug this:
[ 57.202528]
rcu_scheduler_active = 2, debug_locks = 1
[ 57.202529] no locks held by test5/3567.
[ 57.202530]
stack backtrace:
[ 57.202532] CPU: 0 PID: 3567 Comm: test5 Not tainted 6.7.0-rc3-g2cc14f52aeb7 #41492 5b09971b4965c0aceba19f3eea324a4a806e227e
[ 57.202534] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022
[ 57.202536] Call Trace:
[ 57.202537] <TASK>
[ 57.202540] dump_stack_lvl+0x77/0xb0
[ 57.202551] lockdep_rcu_suspicious+0x154/0x1a0
[ 57.202556] rpc_xprt_switch_has_addr+0x17c/0x190 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202596] rpc_clnt_setup_test_and_add_xprt+0x50/0x180 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202621] ? rpc_clnt_add_xprt+0x254/0x300 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202646] rpc_clnt_add_xprt+0x27a/0x300 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202671] ? __pfx_rpc_clnt_setup_test_and_add_xprt+0x10/0x10 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6]
[ 57.202696] nfs4_pnfs_ds_connect+0x345/0x760 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202728] ? __pfx_nfs4_test_session_trunk+0x10/0x10 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202754] nfs4_fl_prepare_ds+0x75/0xc0 [nfs_layout_nfsv41_files e3a4187f18ae8a27b630f9feae6831b584a9360a]
[ 57.202760] filelayout_write_pagelist+0x4a/0x200 [nfs_layout_nfsv41_files e3a4187f18ae8a27b630f9feae6831b584a9360a]
[ 57.202765] pnfs_generic_pg_writepages+0xbe/0x230 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202788] __nfs_pageio_add_request+0x3fd/0x520 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202813] nfs_pageio_add_request+0x18b/0x390 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202831] nfs_do_writepage+0x116/0x1e0 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202849] nfs_writepages_callback+0x13/0x30 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202866] write_cache_pages+0x265/0x450
[ 57.202870] ? __pfx_nfs_writepages_callback+0x10/0x10 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202891] nfs_writepages+0x141/0x230 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202913] do_writepages+0xd2/0x230
[ 57.202917] ? filemap_fdatawrite_wbc+0x5c/0x80
[ 57.202921] filemap_fdatawrite_wbc+0x67/0x80
[ 57.202924] filemap_write_and_wait_range+0xd9/0x170
[ 57.202930] nfs_wb_all+0x49/0x180 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902]
[ 57.202947] nfs4_file_flush+0x72/0xb0 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9]
[ 57.202969] __se_sys_close+0x46/0xd0
[ 57.202972] do_syscall_64+0x68/0x100
[ 57.202975] ? do_syscall_64+0x77/0x100
[ 57.202976] ? do_syscall_64+0x77/0x100
[ 57.202979] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 57.202982] RIP: 0033:0x7fe2b12e4a94
[ 57.202985] Code: 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 80 3d d5 18 0e 00 00 74 13 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 44 c3 0f 1f 00 48 83 ec 18 89 7c 24 0c e8 c3
[ 57.202987] RSP: 002b:00007ffe857ddb38 EFLAGS: 00000202 ORIG_RAX: 0000000000000003
[ 57.202989] RAX: ffffffffffffffda RBX: 00007ffe857dfd68 RCX: 00007fe2b12e4a94
[ 57.202991] RDX: 0000000000002000 RSI: 00007ffe857ddc40 RDI: 0000000000000003
[ 57.202992] RBP: 00007ffe857dfc50 R08: 7fffffffffffffff R09: 0000000065650f49
[ 57.202993] R10: 00007f
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
block: Fix wrong offset in bio_truncate()
bio_truncate() clears the buffer outside of last block of bdev, however
current bio_truncate() is using the wrong offset of page. So it can
return the uninitialized data.
This happened when both of truncated/corrupted FS and userspace (via
bdev) are trying to read the last of bdev. |
In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix uninit-value access in __ip_make_skb()
KMSAN reported uninit-value access in __ip_make_skb() [1]. __ip_make_skb()
tests HDRINCL to know if the skb has icmphdr. However, HDRINCL can cause a
race condition. If calling setsockopt(2) with IP_HDRINCL changes HDRINCL
while __ip_make_skb() is running, the function will access icmphdr in the
skb even if it is not included. This causes the issue reported by KMSAN.
Check FLOWI_FLAG_KNOWN_NH on fl4->flowi4_flags instead of testing HDRINCL
on the socket.
Also, fl4->fl4_icmp_type and fl4->fl4_icmp_code are not initialized. These
are union in struct flowi4 and are implicitly initialized by
flowi4_init_output(), but we should not rely on specific union layout.
Initialize these explicitly in raw_sendmsg().
[1]
BUG: KMSAN: uninit-value in __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
__ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
ip_finish_skb include/net/ip.h:243 [inline]
ip_push_pending_frames+0x4c/0x5c0 net/ipv4/ip_output.c:1508
raw_sendmsg+0x2381/0x2690 net/ipv4/raw.c:654
inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x274/0x3c0 net/socket.c:745
__sys_sendto+0x62c/0x7b0 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x130/0x200 net/socket.c:2199
do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x5f6/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13c/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35a/0x7c0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
__ip_append_data+0x49ab/0x68c0 net/ipv4/ip_output.c:1128
ip_append_data+0x1e7/0x260 net/ipv4/ip_output.c:1365
raw_sendmsg+0x22b1/0x2690 net/ipv4/raw.c:648
inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x274/0x3c0 net/socket.c:745
__sys_sendto+0x62c/0x7b0 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x130/0x200 net/socket.c:2199
do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 1 PID: 15709 Comm: syz-executor.7 Not tainted 6.8.0-11567-gb3603fcb79b1 #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014 |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix potential uninit-value access in __ip6_make_skb()
As it was done in commit fc1092f51567 ("ipv4: Fix uninit-value access in
__ip_make_skb()") for IPv4, check FLOWI_FLAG_KNOWN_NH on fl6->flowi6_flags
instead of testing HDRINCL on the socket to avoid a race condition which
causes uninit-value access. |
In the Linux kernel, the following vulnerability has been resolved:
mm/vmscan: fix a bug calling wakeup_kswapd() with a wrong zone index
With numa balancing on, when a numa system is running where a numa node
doesn't have its local memory so it has no managed zones, the following
oops has been observed. It's because wakeup_kswapd() is called with a
wrong zone index, -1. Fixed it by checking the index before calling
wakeup_kswapd().
> BUG: unable to handle page fault for address: 00000000000033f3
> #PF: supervisor read access in kernel mode
> #PF: error_code(0x0000) - not-present page
> PGD 0 P4D 0
> Oops: 0000 [#1] PREEMPT SMP NOPTI
> CPU: 2 PID: 895 Comm: masim Not tainted 6.6.0-dirty #255
> Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
> rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
> RIP: 0010:wakeup_kswapd (./linux/mm/vmscan.c:7812)
> Code: (omitted)
> RSP: 0000:ffffc90004257d58 EFLAGS: 00010286
> RAX: ffffffffffffffff RBX: ffff88883fff0480 RCX: 0000000000000003
> RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88883fff0480
> RBP: ffffffffffffffff R08: ff0003ffffffffff R09: ffffffffffffffff
> R10: ffff888106c95540 R11: 0000000055555554 R12: 0000000000000003
> R13: 0000000000000000 R14: 0000000000000000 R15: ffff88883fff0940
> FS: 00007fc4b8124740(0000) GS:ffff888827c00000(0000) knlGS:0000000000000000
> CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
> CR2: 00000000000033f3 CR3: 000000026cc08004 CR4: 0000000000770ee0
> DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
> DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
> PKRU: 55555554
> Call Trace:
> <TASK>
> ? __die
> ? page_fault_oops
> ? __pte_offset_map_lock
> ? exc_page_fault
> ? asm_exc_page_fault
> ? wakeup_kswapd
> migrate_misplaced_page
> __handle_mm_fault
> handle_mm_fault
> do_user_addr_fault
> exc_page_fault
> asm_exc_page_fault
> RIP: 0033:0x55b897ba0808
> Code: (omitted)
> RSP: 002b:00007ffeefa821a0 EFLAGS: 00010287
> RAX: 000055b89983acd0 RBX: 00007ffeefa823f8 RCX: 000055b89983acd0
> RDX: 00007fc2f8122010 RSI: 0000000000020000 RDI: 000055b89983acd0
> RBP: 00007ffeefa821a0 R08: 0000000000000037 R09: 0000000000000075
> R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
> R13: 00007ffeefa82410 R14: 000055b897ba5dd8 R15: 00007fc4b8340000
> </TASK> |
In the Linux kernel, the following vulnerability has been resolved:
arm64/sme: Always exit sme_alloc() early with existing storage
When sme_alloc() is called with existing storage and we are not flushing we
will always allocate new storage, both leaking the existing storage and
corrupting the state. Fix this by separating the checks for flushing and
for existing storage as we do for SVE.
Callers that reallocate (eg, due to changing the vector length) should
call sme_free() themselves. |
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u401, 8u401-perf, 11.0.22, 17.0.10, 21.0.2, 22; Oracle GraalVM for JDK: 17.0.10, 21.0.2, 22; Oracle GraalVM Enterprise Edition: 20.3.13 and 21.3.9. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). |