| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix double free in user_cluster_connect()
user_cluster_disconnect() frees "conn->cc_private" which is "lc" but then
the error handling frees "lc" a second time. Set "lc" to NULL on this
path to avoid a double free. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix UAF issue in f2fs_merge_page_bio()
As JY reported in bugzilla [1],
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
pc : [0xffffffe51d249484] f2fs_is_cp_guaranteed+0x70/0x98
lr : [0xffffffe51d24adbc] f2fs_merge_page_bio+0x520/0x6d4
CPU: 3 UID: 0 PID: 6790 Comm: kworker/u16:3 Tainted: P B W OE 6.12.30-android16-5-maybe-dirty-4k #1 5f7701c9cbf727d1eebe77c89bbbeb3371e895e5
Tainted: [P]=PROPRIETARY_MODULE, [B]=BAD_PAGE, [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Workqueue: writeback wb_workfn (flush-254:49)
Call trace:
f2fs_is_cp_guaranteed+0x70/0x98
f2fs_inplace_write_data+0x174/0x2f4
f2fs_do_write_data_page+0x214/0x81c
f2fs_write_single_data_page+0x28c/0x764
f2fs_write_data_pages+0x78c/0xce4
do_writepages+0xe8/0x2fc
__writeback_single_inode+0x4c/0x4b4
writeback_sb_inodes+0x314/0x540
__writeback_inodes_wb+0xa4/0xf4
wb_writeback+0x160/0x448
wb_workfn+0x2f0/0x5dc
process_scheduled_works+0x1c8/0x458
worker_thread+0x334/0x3f0
kthread+0x118/0x1ac
ret_from_fork+0x10/0x20
[1] https://bugzilla.kernel.org/show_bug.cgi?id=220575
The panic was caused by UAF issue w/ below race condition:
kworker
- writepages
- f2fs_write_cache_pages
- f2fs_write_single_data_page
- f2fs_do_write_data_page
- f2fs_inplace_write_data
- f2fs_merge_page_bio
- add_inu_page
: cache page #1 into bio & cache bio in
io->bio_list
- f2fs_write_single_data_page
- f2fs_do_write_data_page
- f2fs_inplace_write_data
- f2fs_merge_page_bio
- add_inu_page
: cache page #2 into bio which is linked
in io->bio_list
write
- f2fs_write_begin
: write page #1
- f2fs_folio_wait_writeback
- f2fs_submit_merged_ipu_write
- f2fs_submit_write_bio
: submit bio which inclues page #1 and #2
software IRQ
- f2fs_write_end_io
- fscrypt_free_bounce_page
: freed bounced page which belongs to page #2
- inc_page_count( , WB_DATA_TYPE(data_folio), false)
: data_folio points to fio->encrypted_page
the bounced page can be freed before
accessing it in f2fs_is_cp_guarantee()
It can reproduce w/ below testcase:
Run below script in shell #1:
for ((i=1;i>0;i++)) do xfs_io -f /mnt/f2fs/enc/file \
-c "pwrite 0 32k" -c "fdatasync"
Run below script in shell #2:
for ((i=1;i>0;i++)) do xfs_io -f /mnt/f2fs/enc/file \
-c "pwrite 0 32k" -c "fdatasync"
So, in f2fs_merge_page_bio(), let's avoid using fio->encrypted_page after
commit page into internal ipu cache. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dlink: handle copy_thresh allocation failure
The driver did not handle failure of `netdev_alloc_skb_ip_align()`.
If the allocation failed, dereferencing `skb->protocol` could lead to
a NULL pointer dereference.
This patch tries to allocate `skb`. If the allocation fails, it falls
back to the normal path.
Tested-on: D-Link DGE-550T Rev-A3 |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix crypto buffers in non-linear memory
The crypto API, through the scatterlist API, expects input buffers to be
in linear memory. We handle this with the cifs_sg_set_buf() helper
that converts vmalloc'd memory to their corresponding pages.
However, when we allocate our aead_request buffer (@creq in
smb2ops.c::crypt_message()), we do so with kvzalloc(), which possibly
puts aead_request->__ctx in vmalloc area.
AEAD algorithm then uses ->__ctx for its private/internal data and
operations, and uses sg_set_buf() for such data on a few places.
This works fine as long as @creq falls into kmalloc zone (small
requests) or vmalloc'd memory is still within linear range.
Tasks' stacks are vmalloc'd by default (CONFIG_VMAP_STACK=y), so too
many tasks will increment the base stacks' addresses to a point where
virt_addr_valid(buf) will fail (BUG() in sg_set_buf()) when that
happens.
In practice: too many parallel reads and writes on an encrypted mount
will trigger this bug.
To fix this, always alloc @creq with kmalloc() instead.
Also drop the @sensitive_size variable/arguments since
kfree_sensitive() doesn't need it.
Backtrace:
[ 945.272081] ------------[ cut here ]------------
[ 945.272774] kernel BUG at include/linux/scatterlist.h:209!
[ 945.273520] Oops: invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC NOPTI
[ 945.274412] CPU: 7 UID: 0 PID: 56 Comm: kworker/u33:0 Kdump: loaded Not tainted 6.15.0-lku-11779-g8e9d6efccdd7-dirty #1 PREEMPT(voluntary)
[ 945.275736] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-2-gc13ff2cd-prebuilt.qemu.org 04/01/2014
[ 945.276877] Workqueue: writeback wb_workfn (flush-cifs-2)
[ 945.277457] RIP: 0010:crypto_gcm_init_common+0x1f9/0x220
[ 945.278018] Code: b0 00 00 00 48 83 c4 08 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 48 c7 c0 00 00 00 80 48 2b 05 5c 58 e5 00 e9 58 ff ff ff <0f> 0b 0f 0b 0f 0b 0f 0b 0f 0b 0f 0b 48 c7 04 24 01 00 00 00 48 8b
[ 945.279992] RSP: 0018:ffffc90000a27360 EFLAGS: 00010246
[ 945.280578] RAX: 0000000000000000 RBX: ffffc90001d85060 RCX: 0000000000000030
[ 945.281376] RDX: 0000000000080000 RSI: 0000000000000000 RDI: ffffc90081d85070
[ 945.282145] RBP: ffffc90001d85010 R08: ffffc90001d85000 R09: 0000000000000000
[ 945.282898] R10: ffffc90001d85090 R11: 0000000000001000 R12: ffffc90001d85070
[ 945.283656] R13: ffff888113522948 R14: ffffc90001d85060 R15: ffffc90001d85010
[ 945.284407] FS: 0000000000000000(0000) GS:ffff8882e66cf000(0000) knlGS:0000000000000000
[ 945.285262] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 945.285884] CR2: 00007fa7ffdd31f4 CR3: 000000010540d000 CR4: 0000000000350ef0
[ 945.286683] Call Trace:
[ 945.286952] <TASK>
[ 945.287184] ? crypt_message+0x33f/0xad0 [cifs]
[ 945.287719] crypto_gcm_encrypt+0x36/0xe0
[ 945.288152] crypt_message+0x54a/0xad0 [cifs]
[ 945.288724] smb3_init_transform_rq+0x277/0x300 [cifs]
[ 945.289300] smb_send_rqst+0xa3/0x160 [cifs]
[ 945.289944] cifs_call_async+0x178/0x340 [cifs]
[ 945.290514] ? __pfx_smb2_writev_callback+0x10/0x10 [cifs]
[ 945.291177] smb2_async_writev+0x3e3/0x670 [cifs]
[ 945.291759] ? find_held_lock+0x32/0x90
[ 945.292212] ? netfs_advance_write+0xf2/0x310
[ 945.292723] netfs_advance_write+0xf2/0x310
[ 945.293210] netfs_write_folio+0x346/0xcc0
[ 945.293689] ? __pfx__raw_spin_unlock_irq+0x10/0x10
[ 945.294250] netfs_writepages+0x117/0x460
[ 945.294724] do_writepages+0xbe/0x170
[ 945.295152] ? find_held_lock+0x32/0x90
[ 945.295600] ? kvm_sched_clock_read+0x11/0x20
[ 945.296103] __writeback_single_inode+0x56/0x4b0
[ 945.296643] writeback_sb_inodes+0x229/0x550
[ 945.297140] __writeback_inodes_wb+0x4c/0xe0
[ 945.297642] wb_writeback+0x2f1/0x3f0
[ 945.298069] wb_workfn+0x300/0x490
[ 945.298472] process_one_work+0x1fe/0x590
[ 945.298949] worker_thread+0x1ce/0x3c0
[ 945.299397] ? __pfx_worker_thread+0x10/0x10
[ 945.299900] kthr
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
vhost: vringh: Modify the return value check
The return value of copy_from_iter and copy_to_iter can't be negative,
check whether the copied lengths are equal. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Skip scalar adjustment for BPF_NEG if dst is a pointer
In check_alu_op(), the verifier currently calls check_reg_arg() and
adjust_scalar_min_max_vals() unconditionally for BPF_NEG operations.
However, if the destination register holds a pointer, these scalar
adjustments are unnecessary and potentially incorrect.
This patch adds a check to skip the adjustment logic when the destination
register contains a pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
Squashfs: fix uninit-value in squashfs_get_parent
Syzkaller reports a "KMSAN: uninit-value in squashfs_get_parent" bug.
This is caused by open_by_handle_at() being called with a file handle
containing an invalid parent inode number. In particular the inode number
is that of a symbolic link, rather than a directory.
Squashfs_get_parent() gets called with that symbolic link inode, and
accesses the parent member field.
unsigned int parent_ino = squashfs_i(inode)->parent;
Because non-directory inodes in Squashfs do not have a parent value, this
is uninitialised, and this causes an uninitialised value access.
The fix is to initialise parent with the invalid inode 0, which will cause
an EINVAL error to be returned.
Regular inodes used to share the parent field with the block_list_start
field. This is removed in this commit to enable the parent field to
contain the invalid inode number 0. |
| In the Linux kernel, the following vulnerability has been resolved:
uio_hv_generic: Let userspace take care of interrupt mask
Remove the logic to set interrupt mask by default in uio_hv_generic
driver as the interrupt mask value is supposed to be controlled
completely by the user space. If the mask bit gets changed
by the driver, concurrently with user mode operating on the ring,
the mask bit may be set when it is supposed to be clear, and the
user-mode driver will miss an interrupt which will cause a hang.
For eg- when the driver sets inbound ring buffer interrupt mask to 1,
the host does not interrupt the guest on the UIO VMBus channel.
However, setting the mask does not prevent the host from putting a
message in the inbound ring buffer. So let’s assume that happens,
the host puts a message into the ring buffer but does not interrupt.
Subsequently, the user space code in the guest sets the inbound ring
buffer interrupt mask to 0, saying “Hey, I’m ready for interrupts”.
User space code then calls pread() to wait for an interrupt.
Then one of two things happens:
* The host never sends another message. So the pread() waits forever.
* The host does send another message. But because there’s already a
message in the ring buffer, it doesn’t generate an interrupt.
This is the correct behavior, because the host should only send an
interrupt when the inbound ring buffer transitions from empty to
not-empty. Adding an additional message to a ring buffer that is not
empty is not supposed to generate an interrupt on the guest.
Since the guest is waiting in pread() and not removing messages from
the ring buffer, the pread() waits forever.
This could be easily reproduced in hv_fcopy_uio_daemon if we delay
setting interrupt mask to 0.
Similarly if hv_uio_channel_cb() sets the interrupt_mask to 1,
there’s a race condition. Once user space empties the inbound ring
buffer, but before user space sets interrupt_mask to 0, the host could
put another message in the ring buffer but it wouldn’t interrupt.
Then the next pread() would hang.
Fix these by removing all instances where interrupt_mask is changed,
while keeping the one in set_event() unchanged to enable userspace
control the interrupt mask by writing 0/1 to /dev/uioX. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/waitid: always prune wait queue entry in io_waitid_wait()
For a successful return, always remove our entry from the wait queue
entry list. Previously this was skipped if a cancelation was in
progress, but this can race with another invocation of the wait queue
entry callback. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/zcrx: fix overshooting recv limit
It's reported that sometimes a zcrx request can receive more than was
requested. It's caused by io_zcrx_recv_skb() adjusting desc->count for
all received buffers including frag lists, but then doing recursive
calls to process frag list skbs, which leads to desc->count double
accounting and underflow. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd937x: set the comp soundwire port correctly
For some reason we endup with setting soundwire port for
HPHL_COMP and HPHR_COMP as zero, this can potentially result
in a memory corruption due to accessing and setting -1 th element of
port_map array. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: udf: fix OOB read in lengthAllocDescs handling
When parsing Allocation Extent Descriptor, lengthAllocDescs comes from
on-disk data and must be validated against the block size. Crafted or
corrupted images may set lengthAllocDescs so that the total descriptor
length (sizeof(allocExtDesc) + lengthAllocDescs) exceeds the buffer,
leading udf_update_tag() to call crc_itu_t() on out-of-bounds memory and
trigger a KASAN use-after-free read.
BUG: KASAN: use-after-free in crc_itu_t+0x1d5/0x2b0 lib/crc-itu-t.c:60
Read of size 1 at addr ffff888041e7d000 by task syz-executor317/5309
CPU: 0 UID: 0 PID: 5309 Comm: syz-executor317 Not tainted 6.12.0-rc4-syzkaller-00261-g850925a8133c #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
crc_itu_t+0x1d5/0x2b0 lib/crc-itu-t.c:60
udf_update_tag+0x70/0x6a0 fs/udf/misc.c:261
udf_write_aext+0x4d8/0x7b0 fs/udf/inode.c:2179
extent_trunc+0x2f7/0x4a0 fs/udf/truncate.c:46
udf_truncate_tail_extent+0x527/0x7e0 fs/udf/truncate.c:106
udf_release_file+0xc1/0x120 fs/udf/file.c:185
__fput+0x23f/0x880 fs/file_table.c:431
task_work_run+0x24f/0x310 kernel/task_work.c:239
exit_task_work include/linux/task_work.h:43 [inline]
do_exit+0xa2f/0x28e0 kernel/exit.c:939
do_group_exit+0x207/0x2c0 kernel/exit.c:1088
__do_sys_exit_group kernel/exit.c:1099 [inline]
__se_sys_exit_group kernel/exit.c:1097 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1097
x64_sys_call+0x2634/0x2640 arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
Validate the computed total length against epos->bh->b_size.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
net: nfc: nci: Add parameter validation for packet data
Syzbot reported an uninitialized value bug in nci_init_req, which was
introduced by commit 5aca7966d2a7 ("Merge tag
'perf-tools-fixes-for-v6.17-2025-09-16' of
git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools").
This bug arises due to very limited and poor input validation
that was done at nic_valid_size(). This validation only
validates the skb->len (directly reflects size provided at the
userspace interface) with the length provided in the buffer
itself (interpreted as NCI_HEADER). This leads to the processing
of memory content at the address assuming the correct layout
per what opcode requires there. This leads to the accesses to
buffer of `skb_buff->data` which is not assigned anything yet.
Following the same silent drop of packets of invalid sizes at
`nic_valid_size()`, add validation of the data in the respective
handlers and return error values in case of failure. Release
the skb if error values are returned from handlers in
`nci_nft_packet` and effectively do a silent drop
Possible TODO: because we silently drop the packets, the
call to `nci_request` will be waiting for completion of request
and will face timeouts. These timeouts can get excessively logged
in the dmesg. A proper handling of them may require to export
`nci_request_cancel` (or propagate error handling from the
nft packets handlers). |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix race condition in kprobe initialization causing NULL pointer dereference
There is a critical race condition in kprobe initialization that can lead to
NULL pointer dereference and kernel crash.
[1135630.084782] Unable to handle kernel paging request at virtual address 0000710a04630000
...
[1135630.260314] pstate: 404003c9 (nZcv DAIF +PAN -UAO)
[1135630.269239] pc : kprobe_perf_func+0x30/0x260
[1135630.277643] lr : kprobe_dispatcher+0x44/0x60
[1135630.286041] sp : ffffaeff4977fa40
[1135630.293441] x29: ffffaeff4977fa40 x28: ffffaf015340e400
[1135630.302837] x27: 0000000000000000 x26: 0000000000000000
[1135630.312257] x25: ffffaf029ed108a8 x24: ffffaf015340e528
[1135630.321705] x23: ffffaeff4977fc50 x22: ffffaeff4977fc50
[1135630.331154] x21: 0000000000000000 x20: ffffaeff4977fc50
[1135630.340586] x19: ffffaf015340e400 x18: 0000000000000000
[1135630.349985] x17: 0000000000000000 x16: 0000000000000000
[1135630.359285] x15: 0000000000000000 x14: 0000000000000000
[1135630.368445] x13: 0000000000000000 x12: 0000000000000000
[1135630.377473] x11: 0000000000000000 x10: 0000000000000000
[1135630.386411] x9 : 0000000000000000 x8 : 0000000000000000
[1135630.395252] x7 : 0000000000000000 x6 : 0000000000000000
[1135630.403963] x5 : 0000000000000000 x4 : 0000000000000000
[1135630.412545] x3 : 0000710a04630000 x2 : 0000000000000006
[1135630.421021] x1 : ffffaeff4977fc50 x0 : 0000710a04630000
[1135630.429410] Call trace:
[1135630.434828] kprobe_perf_func+0x30/0x260
[1135630.441661] kprobe_dispatcher+0x44/0x60
[1135630.448396] aggr_pre_handler+0x70/0xc8
[1135630.454959] kprobe_breakpoint_handler+0x140/0x1e0
[1135630.462435] brk_handler+0xbc/0xd8
[1135630.468437] do_debug_exception+0x84/0x138
[1135630.475074] el1_dbg+0x18/0x8c
[1135630.480582] security_file_permission+0x0/0xd0
[1135630.487426] vfs_write+0x70/0x1c0
[1135630.493059] ksys_write+0x5c/0xc8
[1135630.498638] __arm64_sys_write+0x24/0x30
[1135630.504821] el0_svc_common+0x78/0x130
[1135630.510838] el0_svc_handler+0x38/0x78
[1135630.516834] el0_svc+0x8/0x1b0
kernel/trace/trace_kprobe.c: 1308
0xffff3df8995039ec <kprobe_perf_func+0x2c>: ldr x21, [x24,#120]
include/linux/compiler.h: 294
0xffff3df8995039f0 <kprobe_perf_func+0x30>: ldr x1, [x21,x0]
kernel/trace/trace_kprobe.c
1308: head = this_cpu_ptr(call->perf_events);
1309: if (hlist_empty(head))
1310: return 0;
crash> struct trace_event_call -o
struct trace_event_call {
...
[120] struct hlist_head *perf_events; //(call->perf_event)
...
}
crash> struct trace_event_call ffffaf015340e528
struct trace_event_call {
...
perf_events = 0xffff0ad5fa89f088, //this value is correct, but x21 = 0
...
}
Race Condition Analysis:
The race occurs between kprobe activation and perf_events initialization:
CPU0 CPU1
==== ====
perf_kprobe_init
perf_trace_event_init
tp_event->perf_events = list;(1)
tp_event->class->reg (2)← KPROBE ACTIVE
Debug exception triggers
...
kprobe_dispatcher
kprobe_perf_func (tk->tp.flags & TP_FLAG_PROFILE)
head = this_cpu_ptr(call->perf_events)(3)
(perf_events is still NULL)
Problem:
1. CPU0 executes (1) assigning tp_event->perf_events = list
2. CPU0 executes (2) enabling kprobe functionality via class->reg()
3. CPU1 triggers and reaches kprobe_dispatcher
4. CPU1 checks TP_FLAG_PROFILE - condition passes (step 2 completed)
5. CPU1 calls kprobe_perf_func() and crashes at (3) because
call->perf_events is still NULL
CPU1 sees that kprobe functionality is enabled but does not see that
perf_events has been assigned.
Add pairing read an
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: BPF: Sign-extend struct ops return values properly
The ns_bpf_qdisc selftest triggers a kernel panic:
Oops[#1]:
CPU 0 Unable to handle kernel paging request at virtual address 0000000000741d58, era == 90000000851b5ac0, ra == 90000000851b5aa4
CPU: 0 UID: 0 PID: 449 Comm: test_progs Tainted: G OE 6.16.0+ #3 PREEMPT(full)
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022
pc 90000000851b5ac0 ra 90000000851b5aa4 tp 90000001076b8000 sp 90000001076bb600
a0 0000000000741ce8 a1 0000000000000001 a2 90000001076bb5c0 a3 0000000000000008
a4 90000001004c4620 a5 9000000100741ce8 a6 0000000000000000 a7 0100000000000000
t0 0000000000000010 t1 0000000000000000 t2 9000000104d24d30 t3 0000000000000001
t4 4f2317da8a7e08c4 t5 fffffefffc002f00 t6 90000001004c4620 t7 ffffffffc61c5b3d
t8 0000000000000000 u0 0000000000000001 s9 0000000000000050 s0 90000001075bc800
s1 0000000000000040 s2 900000010597c400 s3 0000000000000008 s4 90000001075bc880
s5 90000001075bc8f0 s6 0000000000000000 s7 0000000000741ce8 s8 0000000000000000
ra: 90000000851b5aa4 __qdisc_run+0xac/0x8d8
ERA: 90000000851b5ac0 __qdisc_run+0xc8/0x8d8
CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE)
PRMD: 00000004 (PPLV0 +PIE -PWE)
EUEN: 00000007 (+FPE +SXE +ASXE -BTE)
ECFG: 00071c1d (LIE=0,2-4,10-12 VS=7)
ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0)
BADV: 0000000000741d58
PRID: 0014c010 (Loongson-64bit, Loongson-3A5000)
Modules linked in: bpf_testmod(OE) [last unloaded: bpf_testmod(OE)]
Process test_progs (pid: 449, threadinfo=000000009af02b3a, task=00000000e9ba4956)
Stack : 0000000000000000 90000001075bc8ac 90000000869524a8 9000000100741ce8
90000001075bc800 9000000100415300 90000001075bc8ac 0000000000000000
900000010597c400 900000008694a000 0000000000000000 9000000105b59000
90000001075bc800 9000000100741ce8 0000000000000050 900000008513000c
9000000086936000 0000000100094d4c fffffff400676208 0000000000000000
9000000105b59000 900000008694a000 9000000086bf0dc0 9000000105b59000
9000000086bf0d68 9000000085147010 90000001075be788 0000000000000000
9000000086bf0f98 0000000000000001 0000000000000010 9000000006015840
0000000000000000 9000000086be6c40 0000000000000000 0000000000000000
0000000000000000 4f2317da8a7e08c4 0000000000000101 4f2317da8a7e08c4
...
Call Trace:
[<90000000851b5ac0>] __qdisc_run+0xc8/0x8d8
[<9000000085130008>] __dev_queue_xmit+0x578/0x10f0
[<90000000853701c0>] ip6_finish_output2+0x2f0/0x950
[<9000000085374bc8>] ip6_finish_output+0x2b8/0x448
[<9000000085370b24>] ip6_xmit+0x304/0x858
[<90000000853c4438>] inet6_csk_xmit+0x100/0x170
[<90000000852b32f0>] __tcp_transmit_skb+0x490/0xdd0
[<90000000852b47fc>] tcp_connect+0xbcc/0x1168
[<90000000853b9088>] tcp_v6_connect+0x580/0x8a0
[<90000000852e7738>] __inet_stream_connect+0x170/0x480
[<90000000852e7a98>] inet_stream_connect+0x50/0x88
[<90000000850f2814>] __sys_connect+0xe4/0x110
[<90000000850f2858>] sys_connect+0x18/0x28
[<9000000085520c94>] do_syscall+0x94/0x1a0
[<9000000083df1fb8>] handle_syscall+0xb8/0x158
Code: 4001ad80 2400873f 2400832d <240073cc> 001137ff 001133ff 6407b41f 001503cc 0280041d
---[ end trace 0000000000000000 ]---
The bpf_fifo_dequeue prog returns a skb which is a pointer. The pointer
is treated as a 32bit value and sign extend to 64bit in epilogue. This
behavior is right for most bpf prog types but wrong for struct ops which
requires LoongArch ABI.
So let's sign extend struct ops return values according to the LoongArch
ABI ([1]) and return value spec in function model.
[1]: https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html |
| In the Linux kernel, the following vulnerability has been resolved:
mm/ksm: fix flag-dropping behavior in ksm_madvise
syzkaller discovered the following crash: (kernel BUG)
[ 44.607039] ------------[ cut here ]------------
[ 44.607422] kernel BUG at mm/userfaultfd.c:2067!
[ 44.608148] Oops: invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN NOPTI
[ 44.608814] CPU: 1 UID: 0 PID: 2475 Comm: reproducer Not tainted 6.16.0-rc6 #1 PREEMPT(none)
[ 44.609635] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[ 44.610695] RIP: 0010:userfaultfd_release_all+0x3a8/0x460
<snip other registers, drop unreliable trace>
[ 44.617726] Call Trace:
[ 44.617926] <TASK>
[ 44.619284] userfaultfd_release+0xef/0x1b0
[ 44.620976] __fput+0x3f9/0xb60
[ 44.621240] fput_close_sync+0x110/0x210
[ 44.622222] __x64_sys_close+0x8f/0x120
[ 44.622530] do_syscall_64+0x5b/0x2f0
[ 44.622840] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 44.623244] RIP: 0033:0x7f365bb3f227
Kernel panics because it detects UFFD inconsistency during
userfaultfd_release_all(). Specifically, a VMA which has a valid pointer
to vma->vm_userfaultfd_ctx, but no UFFD flags in vma->vm_flags.
The inconsistency is caused in ksm_madvise(): when user calls madvise()
with MADV_UNMEARGEABLE on a VMA that is registered for UFFD in MINOR mode,
it accidentally clears all flags stored in the upper 32 bits of
vma->vm_flags.
Assuming x86_64 kernel build, unsigned long is 64-bit and unsigned int and
int are 32-bit wide. This setup causes the following mishap during the &=
~VM_MERGEABLE assignment.
VM_MERGEABLE is a 32-bit constant of type unsigned int, 0x8000'0000.
After ~ is applied, it becomes 0x7fff'ffff unsigned int, which is then
promoted to unsigned long before the & operation. This promotion fills
upper 32 bits with leading 0s, as we're doing unsigned conversion (and
even for a signed conversion, this wouldn't help as the leading bit is 0).
& operation thus ends up AND-ing vm_flags with 0x0000'0000'7fff'ffff
instead of intended 0xffff'ffff'7fff'ffff and hence accidentally clears
the upper 32-bits of its value.
Fix it by changing `VM_MERGEABLE` constant to unsigned long, using the
BIT() macro.
Note: other VM_* flags are not affected: This only happens to the
VM_MERGEABLE flag, as the other VM_* flags are all constants of type int
and after ~ operation, they end up with leading 1 and are thus converted
to unsigned long with leading 1s.
Note 2:
After commit 31defc3b01d9 ("userfaultfd: remove (VM_)BUG_ON()s"), this is
no longer a kernel BUG, but a WARNING at the same place:
[ 45.595973] WARNING: CPU: 1 PID: 2474 at mm/userfaultfd.c:2067
but the root-cause (flag-drop) remains the same.
[akpm@linux-foundation.org: rust bindgen wasn't able to handle BIT(), from Miguel] |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: Fix race condition in RPC handle list access
The 'sess->rpc_handle_list' XArray manages RPC handles within a ksmbd
session. Access to this list is intended to be protected by
'sess->rpc_lock' (an rw_semaphore). However, the locking implementation was
flawed, leading to potential race conditions.
In ksmbd_session_rpc_open(), the code incorrectly acquired only a read lock
before calling xa_store() and xa_erase(). Since these operations modify
the XArray structure, a write lock is required to ensure exclusive access
and prevent data corruption from concurrent modifications.
Furthermore, ksmbd_session_rpc_method() accessed the list using xa_load()
without holding any lock at all. This could lead to reading inconsistent
data or a potential use-after-free if an entry is concurrently removed and
the pointer is dereferenced.
Fix these issues by:
1. Using down_write() and up_write() in ksmbd_session_rpc_open()
to ensure exclusive access during XArray modification, and ensuring
the lock is correctly released on error paths.
2. Adding down_read() and up_read() in ksmbd_session_rpc_method()
to safely protect the lookup. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Skip fastpath emulation on VM-Exit if next RIP isn't valid
Skip the WRMSR and HLT fastpaths in SVM's VM-Exit handler if the next RIP
isn't valid, e.g. because KVM is running with nrips=false. SVM must
decode and emulate to skip the instruction if the CPU doesn't provide the
next RIP, and getting the instruction bytes to decode requires reading
guest memory. Reading guest memory through the emulator can fault, i.e.
can sleep, which is disallowed since the fastpath handlers run with IRQs
disabled.
BUG: sleeping function called from invalid context at ./include/linux/uaccess.h:106
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 32611, name: qemu
preempt_count: 1, expected: 0
INFO: lockdep is turned off.
irq event stamp: 30580
hardirqs last enabled at (30579): [<ffffffffc08b2527>] vcpu_run+0x1787/0x1db0 [kvm]
hardirqs last disabled at (30580): [<ffffffffb4f62e32>] __schedule+0x1e2/0xed0
softirqs last enabled at (30570): [<ffffffffb4247a64>] fpu_swap_kvm_fpstate+0x44/0x210
softirqs last disabled at (30568): [<ffffffffb4247a64>] fpu_swap_kvm_fpstate+0x44/0x210
CPU: 298 UID: 0 PID: 32611 Comm: qemu Tainted: G U 6.16.0-smp--e6c618b51cfe-sleep #782 NONE
Tainted: [U]=USER
Hardware name: Google Astoria-Turin/astoria, BIOS 0.20241223.2-0 01/17/2025
Call Trace:
<TASK>
dump_stack_lvl+0x7d/0xb0
__might_resched+0x271/0x290
__might_fault+0x28/0x80
kvm_vcpu_read_guest_page+0x8d/0xc0 [kvm]
kvm_fetch_guest_virt+0x92/0xc0 [kvm]
__do_insn_fetch_bytes+0xf3/0x1e0 [kvm]
x86_decode_insn+0xd1/0x1010 [kvm]
x86_emulate_instruction+0x105/0x810 [kvm]
__svm_skip_emulated_instruction+0xc4/0x140 [kvm_amd]
handle_fastpath_invd+0xc4/0x1a0 [kvm]
vcpu_run+0x11a1/0x1db0 [kvm]
kvm_arch_vcpu_ioctl_run+0x5cc/0x730 [kvm]
kvm_vcpu_ioctl+0x578/0x6a0 [kvm]
__se_sys_ioctl+0x6d/0xb0
do_syscall_64+0x8a/0x2c0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f479d57a94b
</TASK>
Note, this is essentially a reapply of commit 5c30e8101e8d ("KVM: SVM:
Skip WRMSR fastpath on VM-Exit if next RIP isn't valid"), but with
different justification (KVM now grabs SRCU when skipping the instruction
for other reasons). |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: simplefb: Fix use after free in simplefb_detach_genpds()
The pm_domain cleanup can not be devres managed as it uses struct
simplefb_par which is allocated within struct fb_info by
framebuffer_alloc(). This allocation is explicitly freed by
unregister_framebuffer() in simplefb_remove().
Devres managed cleanup runs after the device remove call and thus can no
longer access struct simplefb_par.
Call simplefb_detach_genpds() explicitly from simplefb_destroy() like
the cleanup functions for clocks and regulators.
Fixes an use after free on M2 Mac mini during
aperture_remove_conflicting_devices() using the downstream asahi kernel
with Debian's kernel config. For unknown reasons this started to
consistently dereference an invalid pointer in v6.16.3 based kernels.
[ 6.736134] BUG: KASAN: slab-use-after-free in simplefb_detach_genpds+0x58/0x220
[ 6.743545] Read of size 4 at addr ffff8000304743f0 by task (udev-worker)/227
[ 6.750697]
[ 6.752182] CPU: 6 UID: 0 PID: 227 Comm: (udev-worker) Tainted: G S 6.16.3-asahi+ #16 PREEMPTLAZY
[ 6.752186] Tainted: [S]=CPU_OUT_OF_SPEC
[ 6.752187] Hardware name: Apple Mac mini (M2, 2023) (DT)
[ 6.752189] Call trace:
[ 6.752190] show_stack+0x34/0x98 (C)
[ 6.752194] dump_stack_lvl+0x60/0x80
[ 6.752197] print_report+0x17c/0x4d8
[ 6.752201] kasan_report+0xb4/0x100
[ 6.752206] __asan_report_load4_noabort+0x20/0x30
[ 6.752209] simplefb_detach_genpds+0x58/0x220
[ 6.752213] devm_action_release+0x50/0x98
[ 6.752216] release_nodes+0xd0/0x2c8
[ 6.752219] devres_release_all+0xfc/0x178
[ 6.752221] device_unbind_cleanup+0x28/0x168
[ 6.752224] device_release_driver_internal+0x34c/0x470
[ 6.752228] device_release_driver+0x20/0x38
[ 6.752231] bus_remove_device+0x1b0/0x380
[ 6.752234] device_del+0x314/0x820
[ 6.752238] platform_device_del+0x3c/0x1e8
[ 6.752242] platform_device_unregister+0x20/0x50
[ 6.752246] aperture_detach_platform_device+0x1c/0x30
[ 6.752250] aperture_detach_devices+0x16c/0x290
[ 6.752253] aperture_remove_conflicting_devices+0x34/0x50
...
[ 6.752343]
[ 6.967409] Allocated by task 62:
[ 6.970724] kasan_save_stack+0x3c/0x70
[ 6.974560] kasan_save_track+0x20/0x40
[ 6.978397] kasan_save_alloc_info+0x40/0x58
[ 6.982670] __kasan_kmalloc+0xd4/0xd8
[ 6.986420] __kmalloc_noprof+0x194/0x540
[ 6.990432] framebuffer_alloc+0xc8/0x130
[ 6.994444] simplefb_probe+0x258/0x2378
...
[ 7.054356]
[ 7.055838] Freed by task 227:
[ 7.058891] kasan_save_stack+0x3c/0x70
[ 7.062727] kasan_save_track+0x20/0x40
[ 7.066565] kasan_save_free_info+0x4c/0x80
[ 7.070751] __kasan_slab_free+0x6c/0xa0
[ 7.074675] kfree+0x10c/0x380
[ 7.077727] framebuffer_release+0x5c/0x90
[ 7.081826] simplefb_destroy+0x1b4/0x2c0
[ 7.085837] put_fb_info+0x98/0x100
[ 7.089326] unregister_framebuffer+0x178/0x320
[ 7.093861] simplefb_remove+0x3c/0x60
[ 7.097611] platform_remove+0x60/0x98
[ 7.101361] device_remove+0xb8/0x160
[ 7.105024] device_release_driver_internal+0x2fc/0x470
[ 7.110256] device_release_driver+0x20/0x38
[ 7.114529] bus_remove_device+0x1b0/0x380
[ 7.118628] device_del+0x314/0x820
[ 7.122116] platform_device_del+0x3c/0x1e8
[ 7.126302] platform_device_unregister+0x20/0x50
[ 7.131012] aperture_detach_platform_device+0x1c/0x30
[ 7.136157] aperture_detach_devices+0x16c/0x290
[ 7.140779] aperture_remove_conflicting_devices+0x34/0x50
... |
| In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: fix possible map leak in fastrpc_put_args
copy_to_user() failure would cause an early return without cleaning up
the fdlist, which has been updated by the DSP. This could lead to map
leak. Fix this by redirecting to a cleanup path on failure, ensuring
that all mapped buffers are properly released before returning. |