CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Improper Encoding or Escaping of Output, Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection'), Improper Neutralization of Argument Delimiters in a Command ('Argument Injection'), Improper Control of Generation of Code ('Code Injection') vulnerability in Patika Global Technologies HumanSuite allows Input Data Manipulation, Format String Injection, Reflection Injection, Code Injection.This issue affects HumanSuite: before 53.21.0. |
osCommerce versions up to and including 2.2 RC2a contain a vulnerability in its administrative file manager utility (admin/file_manager.php). The interface allows file uploads and edits without sufficient input validation or access control. An unauthenticated attacker can craft a POST request to upload a .php file containing arbitrary code, which is then executed by the server. |
IBM AIX 7.2, 7.3, IBM VIOS 3.1, and 4.1, when configured to use Kerberos network authentication, could allow a local user to write to files on the system with root privileges due to improper initialization of critical variables. |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dp: Free resources after unregistering them
The DP component's unbind operation walks through the submodules to
unregister and clean things up. But if the unbind happens because the DP
controller itself is being removed, all the memory for those submodules
has just been freed.
Change the order of these operations to avoid the many use-after-free
that otherwise happens in this code path.
Patchwork: https://patchwork.freedesktop.org/patch/542166/ |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Enhance sanity check while generating attr_list
ni_create_attr_list uses WARN_ON to catch error cases while generating
attribute list, which only prints out stack trace and may not be enough.
This repalces them with more proper error handling flow.
[ 59.666332] BUG: kernel NULL pointer dereference, address: 000000000000000e
[ 59.673268] #PF: supervisor read access in kernel mode
[ 59.678354] #PF: error_code(0x0000) - not-present page
[ 59.682831] PGD 8000000005ff1067 P4D 8000000005ff1067 PUD 7dee067 PMD 0
[ 59.688556] Oops: 0000 [#1] PREEMPT SMP KASAN PTI
[ 59.692642] CPU: 0 PID: 198 Comm: poc Tainted: G B W 6.2.0-rc1+ #4
[ 59.698868] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
[ 59.708795] RIP: 0010:ni_create_attr_list+0x505/0x860
[ 59.713657] Code: 7e 10 e8 5e d0 d0 ff 45 0f b7 76 10 48 8d 7b 16 e8 00 d1 d0 ff 66 44 89 73 16 4d 8d 75 0e 4c 89 f7 e8 3f d0 d0 ff 4c 8d8
[ 59.731559] RSP: 0018:ffff88800a56f1e0 EFLAGS: 00010282
[ 59.735691] RAX: 0000000000000001 RBX: ffff88800b7b5088 RCX: ffffffffb83079fe
[ 59.741792] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffffbb7f9fc0
[ 59.748423] RBP: ffff88800a56f3a8 R08: ffff88800b7b50a0 R09: fffffbfff76ff3f9
[ 59.754654] R10: ffffffffbb7f9fc7 R11: fffffbfff76ff3f8 R12: ffff88800b756180
[ 59.761552] R13: 0000000000000000 R14: 000000000000000e R15: 0000000000000050
[ 59.768323] FS: 00007feaa8c96440(0000) GS:ffff88806d400000(0000) knlGS:0000000000000000
[ 59.776027] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 59.781395] CR2: 00007f3a2e0b1000 CR3: 000000000a5bc000 CR4: 00000000000006f0
[ 59.787607] Call Trace:
[ 59.790271] <TASK>
[ 59.792488] ? __pfx_ni_create_attr_list+0x10/0x10
[ 59.797235] ? kernel_text_address+0xd3/0xe0
[ 59.800856] ? unwind_get_return_address+0x3e/0x60
[ 59.805101] ? __kasan_check_write+0x18/0x20
[ 59.809296] ? preempt_count_sub+0x1c/0xd0
[ 59.813421] ni_ins_attr_ext+0x52c/0x5c0
[ 59.817034] ? __pfx_ni_ins_attr_ext+0x10/0x10
[ 59.821926] ? __vfs_setxattr+0x121/0x170
[ 59.825718] ? __vfs_setxattr_noperm+0x97/0x300
[ 59.829562] ? __vfs_setxattr_locked+0x145/0x170
[ 59.833987] ? vfs_setxattr+0x137/0x2a0
[ 59.836732] ? do_setxattr+0xce/0x150
[ 59.839807] ? setxattr+0x126/0x140
[ 59.842353] ? path_setxattr+0x164/0x180
[ 59.845275] ? __x64_sys_setxattr+0x71/0x90
[ 59.848838] ? do_syscall_64+0x3f/0x90
[ 59.851898] ? entry_SYSCALL_64_after_hwframe+0x72/0xdc
[ 59.857046] ? stack_depot_save+0x17/0x20
[ 59.860299] ni_insert_attr+0x1ba/0x420
[ 59.863104] ? __pfx_ni_insert_attr+0x10/0x10
[ 59.867069] ? preempt_count_sub+0x1c/0xd0
[ 59.869897] ? _raw_spin_unlock_irqrestore+0x2b/0x50
[ 59.874088] ? __create_object+0x3ae/0x5d0
[ 59.877865] ni_insert_resident+0xc4/0x1c0
[ 59.881430] ? __pfx_ni_insert_resident+0x10/0x10
[ 59.886355] ? kasan_save_alloc_info+0x1f/0x30
[ 59.891117] ? __kasan_kmalloc+0x8b/0xa0
[ 59.894383] ntfs_set_ea+0x90d/0xbf0
[ 59.897703] ? __pfx_ntfs_set_ea+0x10/0x10
[ 59.901011] ? kernel_text_address+0xd3/0xe0
[ 59.905308] ? __kernel_text_address+0x16/0x50
[ 59.909811] ? unwind_get_return_address+0x3e/0x60
[ 59.914898] ? __pfx_stack_trace_consume_entry+0x10/0x10
[ 59.920250] ? arch_stack_walk+0xa2/0x100
[ 59.924560] ? filter_irq_stacks+0x27/0x80
[ 59.928722] ntfs_setxattr+0x405/0x440
[ 59.932512] ? __pfx_ntfs_setxattr+0x10/0x10
[ 59.936634] ? kvmalloc_node+0x2d/0x120
[ 59.940378] ? kasan_save_stack+0x41/0x60
[ 59.943870] ? kasan_save_stack+0x2a/0x60
[ 59.947719] ? kasan_set_track+0x29/0x40
[ 59.951417] ? kasan_save_alloc_info+0x1f/0x30
[ 59.955733] ? __kasan_kmalloc+0x8b/0xa0
[ 59.959598] ? __kmalloc_node+0x68/0x150
[ 59.963163] ? kvmalloc_node+0x2d/0x120
[ 59.966490] ? vmemdup_user+0x2b/0xa0
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
caif: fix memory leak in cfctrl_linkup_request()
When linktype is unknown or kzalloc failed in cfctrl_linkup_request(),
pkt is not released. Add release process to error path. |
In the Linux kernel, the following vulnerability has been resolved:
USB: chipidea: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
A vulnerability was identified in Portabilis i-Educar up to 2.10. Impacted is an unknown function of the file /intranet/educar_calendario_anotacao_cad.php. Such manipulation of the argument nm_anotacao/descricao leads to cross site scripting. It is possible to launch the attack remotely. The exploit is publicly available and might be used. |
The N-Reporter, N-Cloud, and N-Probe developed by N-Partner has an OS Command Injection vulnerability, allowing authenticated remote attackers to inject arbitrary OS commands and execute them on the server. |
In Alludo MindManager before 25.0.208 on Windows, attackers could potentially execute code as other local users on the same machine if they could write DLL files to directories within victims' DLL search paths. |
Ilevia EVE X1 Server version ≤ 4.7.18.0.eden contains an unauthenticated OS command injection vulnerability in the /ajax/php/login.php script. Remote attackers can execute arbitrary system commands by injecting payloads into the 'passwd' HTTP POST parameter, leading to full system compromise or denial of service. |
A vulnerability in the HPE Aruba Networking SD-WAN Gateways could allow an unauthenticated remote attacker to bypass firewall protections. Successful exploitation could allow an attacker to route potentially harmful traffic through the internal network, leading to unauthorized access or disruption of services. |
Improper neutralization of special elements used in an OS command ('OS Command Injection') issue exists in WN-7D36QR and WN-7D36QR/UE. If this vulnerability is exploited, an arbitrary OS command may be executed by a remote authenticated attacker. |
A vulnerability in the command-line interface of EdgeConnect SD-WAN could allow an authenticated attacker to read arbitrary files within the system. Successful exploitation could allow an attacker to read sensitive data from the underlying file system. |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Add a null ptr check for dpu_encoder_needs_modeset
The drm_atomic_get_new_connector_state() can return NULL if the
connector is not part of the atomic state. Add a check to prevent
a NULL pointer dereference.
This follows the same pattern used in dpu_encoder_update_topology()
within the same file, which checks for NULL before using conn_state.
Patchwork: https://patchwork.freedesktop.org/patch/665188/ |
In the Linux kernel, the following vulnerability has been resolved:
net: rose: convert 'use' field to refcount_t
The 'use' field in struct rose_neigh is used as a reference counter but
lacks atomicity. This can lead to race conditions where a rose_neigh
structure is freed while still being referenced by other code paths.
For example, when rose_neigh->use becomes zero during an ioctl operation
via rose_rt_ioctl(), the structure may be removed while its timer is
still active, potentially causing use-after-free issues.
This patch changes the type of 'use' from unsigned short to refcount_t and
updates all code paths to use rose_neigh_hold() and rose_neigh_put() which
operate reference counts atomically. |
In the Linux kernel, the following vulnerability has been resolved:
atm: atmtcp: Prevent arbitrary write in atmtcp_recv_control().
syzbot reported the splat below. [0]
When atmtcp_v_open() or atmtcp_v_close() is called via connect()
or close(), atmtcp_send_control() is called to send an in-kernel
special message.
The message has ATMTCP_HDR_MAGIC in atmtcp_control.hdr.length.
Also, a pointer of struct atm_vcc is set to atmtcp_control.vcc.
The notable thing is struct atmtcp_control is uAPI but has a
space for an in-kernel pointer.
struct atmtcp_control {
struct atmtcp_hdr hdr; /* must be first */
...
atm_kptr_t vcc; /* both directions */
...
} __ATM_API_ALIGN;
typedef struct { unsigned char _[8]; } __ATM_API_ALIGN atm_kptr_t;
The special message is processed in atmtcp_recv_control() called
from atmtcp_c_send().
atmtcp_c_send() is vcc->dev->ops->send() and called from 2 paths:
1. .ndo_start_xmit() (vcc->send() == atm_send_aal0())
2. vcc_sendmsg()
The problem is sendmsg() does not validate the message length and
userspace can abuse atmtcp_recv_control() to overwrite any kptr
by atmtcp_control.
Let's add a new ->pre_send() hook to validate messages from sendmsg().
[0]:
Oops: general protection fault, probably for non-canonical address 0xdffffc00200000ab: 0000 [#1] SMP KASAN PTI
KASAN: probably user-memory-access in range [0x0000000100000558-0x000000010000055f]
CPU: 0 UID: 0 PID: 5865 Comm: syz-executor331 Not tainted 6.17.0-rc1-syzkaller-00215-gbab3ce404553 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025
RIP: 0010:atmtcp_recv_control drivers/atm/atmtcp.c:93 [inline]
RIP: 0010:atmtcp_c_send+0x1da/0x950 drivers/atm/atmtcp.c:297
Code: 4d 8d 75 1a 4c 89 f0 48 c1 e8 03 42 0f b6 04 20 84 c0 0f 85 15 06 00 00 41 0f b7 1e 4d 8d b7 60 05 00 00 4c 89 f0 48 c1 e8 03 <42> 0f b6 04 20 84 c0 0f 85 13 06 00 00 66 41 89 1e 4d 8d 75 1c 4c
RSP: 0018:ffffc90003f5f810 EFLAGS: 00010203
RAX: 00000000200000ab RBX: 0000000000000000 RCX: 0000000000000000
RDX: ffff88802a510000 RSI: 00000000ffffffff RDI: ffff888030a6068c
RBP: ffff88802699fb40 R08: ffff888030a606eb R09: 1ffff1100614c0dd
R10: dffffc0000000000 R11: ffffffff8718fc40 R12: dffffc0000000000
R13: ffff888030a60680 R14: 000000010000055f R15: 00000000ffffffff
FS: 00007f8d7e9236c0(0000) GS:ffff888125c1c000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000045ad50 CR3: 0000000075bde000 CR4: 00000000003526f0
Call Trace:
<TASK>
vcc_sendmsg+0xa10/0xc60 net/atm/common.c:645
sock_sendmsg_nosec net/socket.c:714 [inline]
__sock_sendmsg+0x219/0x270 net/socket.c:729
____sys_sendmsg+0x505/0x830 net/socket.c:2614
___sys_sendmsg+0x21f/0x2a0 net/socket.c:2668
__sys_sendmsg net/socket.c:2700 [inline]
__do_sys_sendmsg net/socket.c:2705 [inline]
__se_sys_sendmsg net/socket.c:2703 [inline]
__x64_sys_sendmsg+0x19b/0x260 net/socket.c:2703
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f8d7e96a4a9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f8d7e923198 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f8d7e9f4308 RCX: 00007f8d7e96a4a9
RDX: 0000000000000000 RSI: 0000200000000240 RDI: 0000000000000005
RBP: 00007f8d7e9f4300 R08: 65732f636f72702f R09: 65732f636f72702f
R10: 65732f636f72702f R11: 0000000000000246 R12: 00007f8d7e9c10ac
R13: 00007f8d7e9231a0 R14: 0000200000000200 R15: 0000200000000250
</TASK>
Modules linked in: |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, Fix memory leak in hws_pool_buddy_init error path
In the error path of hws_pool_buddy_init(), the buddy allocator cleanup
doesn't free the allocator structure itself, causing a memory leak.
Add the missing kfree() to properly release all allocated memory. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, Fix memory leak in hws_action_get_shared_stc_nic error flow
When an invalid stc_type is provided, the function allocates memory for
shared_stc but jumps to unlock_and_out without freeing it, causing a
memory leak.
Fix by jumping to free_shared_stc label instead to ensure proper cleanup. |
Spring Cloud Gateway Server Webflux may be vulnerable to Spring Environment property modification.
An application should be considered vulnerable when all the following are true:
* The application is using Spring Cloud Gateway Server Webflux (Spring Cloud Gateway Server WebMVC is not vulnerable).
* Spring Boot actuator is a dependency.
* The Spring Cloud Gateway Server Webflux actuator web endpoint is enabled via management.endpoints.web.exposure.include=gateway.
* The actuator endpoints are available to attackers.
* The actuator endpoints are unsecured. |