Search

Search Results (320004 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40037 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fbdev: simplefb: Fix use after free in simplefb_detach_genpds() The pm_domain cleanup can not be devres managed as it uses struct simplefb_par which is allocated within struct fb_info by framebuffer_alloc(). This allocation is explicitly freed by unregister_framebuffer() in simplefb_remove(). Devres managed cleanup runs after the device remove call and thus can no longer access struct simplefb_par. Call simplefb_detach_genpds() explicitly from simplefb_destroy() like the cleanup functions for clocks and regulators. Fixes an use after free on M2 Mac mini during aperture_remove_conflicting_devices() using the downstream asahi kernel with Debian's kernel config. For unknown reasons this started to consistently dereference an invalid pointer in v6.16.3 based kernels. [ 6.736134] BUG: KASAN: slab-use-after-free in simplefb_detach_genpds+0x58/0x220 [ 6.743545] Read of size 4 at addr ffff8000304743f0 by task (udev-worker)/227 [ 6.750697] [ 6.752182] CPU: 6 UID: 0 PID: 227 Comm: (udev-worker) Tainted: G S 6.16.3-asahi+ #16 PREEMPTLAZY [ 6.752186] Tainted: [S]=CPU_OUT_OF_SPEC [ 6.752187] Hardware name: Apple Mac mini (M2, 2023) (DT) [ 6.752189] Call trace: [ 6.752190] show_stack+0x34/0x98 (C) [ 6.752194] dump_stack_lvl+0x60/0x80 [ 6.752197] print_report+0x17c/0x4d8 [ 6.752201] kasan_report+0xb4/0x100 [ 6.752206] __asan_report_load4_noabort+0x20/0x30 [ 6.752209] simplefb_detach_genpds+0x58/0x220 [ 6.752213] devm_action_release+0x50/0x98 [ 6.752216] release_nodes+0xd0/0x2c8 [ 6.752219] devres_release_all+0xfc/0x178 [ 6.752221] device_unbind_cleanup+0x28/0x168 [ 6.752224] device_release_driver_internal+0x34c/0x470 [ 6.752228] device_release_driver+0x20/0x38 [ 6.752231] bus_remove_device+0x1b0/0x380 [ 6.752234] device_del+0x314/0x820 [ 6.752238] platform_device_del+0x3c/0x1e8 [ 6.752242] platform_device_unregister+0x20/0x50 [ 6.752246] aperture_detach_platform_device+0x1c/0x30 [ 6.752250] aperture_detach_devices+0x16c/0x290 [ 6.752253] aperture_remove_conflicting_devices+0x34/0x50 ... [ 6.752343] [ 6.967409] Allocated by task 62: [ 6.970724] kasan_save_stack+0x3c/0x70 [ 6.974560] kasan_save_track+0x20/0x40 [ 6.978397] kasan_save_alloc_info+0x40/0x58 [ 6.982670] __kasan_kmalloc+0xd4/0xd8 [ 6.986420] __kmalloc_noprof+0x194/0x540 [ 6.990432] framebuffer_alloc+0xc8/0x130 [ 6.994444] simplefb_probe+0x258/0x2378 ... [ 7.054356] [ 7.055838] Freed by task 227: [ 7.058891] kasan_save_stack+0x3c/0x70 [ 7.062727] kasan_save_track+0x20/0x40 [ 7.066565] kasan_save_free_info+0x4c/0x80 [ 7.070751] __kasan_slab_free+0x6c/0xa0 [ 7.074675] kfree+0x10c/0x380 [ 7.077727] framebuffer_release+0x5c/0x90 [ 7.081826] simplefb_destroy+0x1b4/0x2c0 [ 7.085837] put_fb_info+0x98/0x100 [ 7.089326] unregister_framebuffer+0x178/0x320 [ 7.093861] simplefb_remove+0x3c/0x60 [ 7.097611] platform_remove+0x60/0x98 [ 7.101361] device_remove+0xb8/0x160 [ 7.105024] device_release_driver_internal+0x2fc/0x470 [ 7.110256] device_release_driver+0x20/0x38 [ 7.114529] bus_remove_device+0x1b0/0x380 [ 7.118628] device_del+0x314/0x820 [ 7.122116] platform_device_del+0x3c/0x1e8 [ 7.126302] platform_device_unregister+0x20/0x50 [ 7.131012] aperture_detach_platform_device+0x1c/0x30 [ 7.136157] aperture_detach_devices+0x16c/0x290 [ 7.140779] aperture_remove_conflicting_devices+0x34/0x50 ...
CVE-2025-40036 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: misc: fastrpc: fix possible map leak in fastrpc_put_args copy_to_user() failure would cause an early return without cleaning up the fdlist, which has been updated by the DSP. This could lead to map leak. Fix this by redirecting to a cleanup path on failure, ensuring that all mapped buffers are properly released before returning.
CVE-2025-40035 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Input: uinput - zero-initialize uinput_ff_upload_compat to avoid info leak Struct ff_effect_compat is embedded twice inside uinput_ff_upload_compat, contains internal padding. In particular, there is a hole after struct ff_replay to satisfy alignment requirements for the following union member. Without clearing the structure, copy_to_user() may leak stack data to userspace. Initialize ff_up_compat to zero before filling valid fields.
CVE-2025-40034 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: PCI/AER: Avoid NULL pointer dereference in aer_ratelimit() When platform firmware supplies error information to the OS, e.g., via the ACPI APEI GHES mechanism, it may identify an error source device that doesn't advertise an AER Capability and therefore dev->aer_info, which contains AER stats and ratelimiting data, is NULL. pci_dev_aer_stats_incr() already checks dev->aer_info for NULL, but aer_ratelimit() did not, leading to NULL pointer dereferences like this one from the URL below: {1}[Hardware Error]: Hardware error from APEI Generic Hardware Error Source: 0 {1}[Hardware Error]: event severity: corrected {1}[Hardware Error]: device_id: 0000:00:00.0 {1}[Hardware Error]: vendor_id: 0x8086, device_id: 0x2020 {1}[Hardware Error]: aer_cor_status: 0x00001000, aer_cor_mask: 0x00002000 BUG: kernel NULL pointer dereference, address: 0000000000000264 RIP: 0010:___ratelimit+0xc/0x1b0 pci_print_aer+0x141/0x360 aer_recover_work_func+0xb5/0x130 [8086:2020] is an Intel "Sky Lake-E DMI3 Registers" device that claims to be a Root Port but does not advertise an AER Capability. Add a NULL check in aer_ratelimit() to avoid the NULL pointer dereference. Note that this also prevents ratelimiting these events from GHES. [bhelgaas: add crash details to commit log]
CVE-2025-40033 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: remoteproc: pru: Fix potential NULL pointer dereference in pru_rproc_set_ctable() pru_rproc_set_ctable() accessed rproc->priv before the IS_ERR_OR_NULL check, which could lead to a null pointer dereference. Move the pru assignment, ensuring we never dereference a NULL rproc pointer.
CVE-2025-40032 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: endpoint: pci-epf-test: Add NULL check for DMA channels before release The fields dma_chan_tx and dma_chan_rx of the struct pci_epf_test can be NULL even after EPF initialization. Then it is prudent to check that they have non-NULL values before releasing the channels. Add the checks in pci_epf_test_clean_dma_chan(). Without the checks, NULL pointer dereferences happen and they can lead to a kernel panic in some cases: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000050 Call trace: dma_release_channel+0x2c/0x120 (P) pci_epf_test_epc_deinit+0x94/0xc0 [pci_epf_test] pci_epc_deinit_notify+0x74/0xc0 tegra_pcie_ep_pex_rst_irq+0x250/0x5d8 irq_thread_fn+0x34/0xb8 irq_thread+0x18c/0x2e8 kthread+0x14c/0x210 ret_from_fork+0x10/0x20 [mani: trimmed the stack trace]
CVE-2025-40031 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tee: fix register_shm_helper() In register_shm_helper(), fix incorrect error handling for a call to iov_iter_extract_pages(). A case is missing for when iov_iter_extract_pages() only got some pages and return a number larger than 0, but not the requested amount. This fixes a possible NULL pointer dereference following a bad input from ioctl(TEE_IOC_SHM_REGISTER) where parts of the buffer isn't mapped.
CVE-2025-40030 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: pinctrl: check the return value of pinmux_ops::get_function_name() While the API contract in docs doesn't specify it explicitly, the generic implementation of the get_function_name() callback from struct pinmux_ops - pinmux_generic_get_function_name() - can fail and return NULL. This is already checked in pinmux_check_ops() so add a similar check in pinmux_func_name_to_selector() instead of passing the returned pointer right down to strcmp() where the NULL can get dereferenced. This is normal operation when adding new pinfunctions.
CVE-2025-40029 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bus: fsl-mc: Check return value of platform_get_resource() platform_get_resource() returns NULL in case of failure, so check its return value and propagate the error in order to prevent NULL pointer dereference.
CVE-2025-40028 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: binder: fix double-free in dbitmap A process might fail to allocate a new bitmap when trying to expand its proc->dmap. In that case, dbitmap_grow() fails and frees the old bitmap via dbitmap_free(). However, the driver calls dbitmap_free() again when the same process terminates, leading to a double-free error: ================================================================== BUG: KASAN: double-free in binder_proc_dec_tmpref+0x2e0/0x55c Free of addr ffff00000b7c1420 by task kworker/9:1/209 CPU: 9 UID: 0 PID: 209 Comm: kworker/9:1 Not tainted 6.17.0-rc6-dirty #5 PREEMPT Hardware name: linux,dummy-virt (DT) Workqueue: events binder_deferred_func Call trace: kfree+0x164/0x31c binder_proc_dec_tmpref+0x2e0/0x55c binder_deferred_func+0xc24/0x1120 process_one_work+0x520/0xba4 [...] Allocated by task 448: __kmalloc_noprof+0x178/0x3c0 bitmap_zalloc+0x24/0x30 binder_open+0x14c/0xc10 [...] Freed by task 449: kfree+0x184/0x31c binder_inc_ref_for_node+0xb44/0xe44 binder_transaction+0x29b4/0x7fbc binder_thread_write+0x1708/0x442c binder_ioctl+0x1b50/0x2900 [...] ================================================================== Fix this issue by marking proc->map NULL in dbitmap_free().
CVE-2025-40027 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/9p: fix double req put in p9_fd_cancelled Syzkaller reports a KASAN issue as below: general protection fault, probably for non-canonical address 0xfbd59c0000000021: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: maybe wild-memory-access in range [0xdead000000000108-0xdead00000000010f] CPU: 0 PID: 5083 Comm: syz-executor.2 Not tainted 6.1.134-syzkaller-00037-g855bd1d7d838 #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 RIP: 0010:__list_del include/linux/list.h:114 [inline] RIP: 0010:__list_del_entry include/linux/list.h:137 [inline] RIP: 0010:list_del include/linux/list.h:148 [inline] RIP: 0010:p9_fd_cancelled+0xe9/0x200 net/9p/trans_fd.c:734 Call Trace: <TASK> p9_client_flush+0x351/0x440 net/9p/client.c:614 p9_client_rpc+0xb6b/0xc70 net/9p/client.c:734 p9_client_version net/9p/client.c:920 [inline] p9_client_create+0xb51/0x1240 net/9p/client.c:1027 v9fs_session_init+0x1f0/0x18f0 fs/9p/v9fs.c:408 v9fs_mount+0xba/0xcb0 fs/9p/vfs_super.c:126 legacy_get_tree+0x108/0x220 fs/fs_context.c:632 vfs_get_tree+0x8e/0x300 fs/super.c:1573 do_new_mount fs/namespace.c:3056 [inline] path_mount+0x6a6/0x1e90 fs/namespace.c:3386 do_mount fs/namespace.c:3399 [inline] __do_sys_mount fs/namespace.c:3607 [inline] __se_sys_mount fs/namespace.c:3584 [inline] __x64_sys_mount+0x283/0x300 fs/namespace.c:3584 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 This happens because of a race condition between: - The 9p client sending an invalid flush request and later cleaning it up; - The 9p client in p9_read_work() canceled all pending requests. Thread 1 Thread 2 ... p9_client_create() ... p9_fd_create() ... p9_conn_create() ... // start Thread 2 INIT_WORK(&m->rq, p9_read_work); p9_read_work() ... p9_client_rpc() ... ... p9_conn_cancel() ... spin_lock(&m->req_lock); ... p9_fd_cancelled() ... ... spin_unlock(&m->req_lock); // status rewrite p9_client_cb(m->client, req, REQ_STATUS_ERROR) // first remove list_del(&req->req_list); ... spin_lock(&m->req_lock) ... // second remove list_del(&req->req_list); spin_unlock(&m->req_lock) ... Commit 74d6a5d56629 ("9p/trans_fd: Fix concurrency del of req_list in p9_fd_cancelled/p9_read_work") fixes a concurrency issue in the 9p filesystem client where the req_list could be deleted simultaneously by both p9_read_work and p9_fd_cancelled functions, but for the case where req->status equals REQ_STATUS_RCVD. Update the check for req->status in p9_fd_cancelled to skip processing not just received requests, but anything that is not SENT, as whatever changed the state from SENT also removed the request from its list. Found by Linux Verification Center (linuxtesting.org) with Syzkaller. [updated the check from status == RECV || status == ERROR to status != SENT]
CVE-2025-40026 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Don't (re)check L1 intercepts when completing userspace I/O When completing emulation of instruction that generated a userspace exit for I/O, don't recheck L1 intercepts as KVM has already finished that phase of instruction execution, i.e. has already committed to allowing L2 to perform I/O. If L1 (or host userspace) modifies the I/O permission bitmaps during the exit to userspace, KVM will treat the access as being intercepted despite already having emulated the I/O access. Pivot on EMULTYPE_NO_DECODE to detect that KVM is completing emulation. Of the three users of EMULTYPE_NO_DECODE, only complete_emulated_io() (the intended "recipient") can reach the code in question. gp_interception()'s use is mutually exclusive with is_guest_mode(), and complete_emulated_insn_gp() unconditionally pairs EMULTYPE_NO_DECODE with EMULTYPE_SKIP. The bad behavior was detected by a syzkaller program that toggles port I/O interception during the userspace I/O exit, ultimately resulting in a WARN on vcpu->arch.pio.count being non-zero due to KVM no completing emulation of the I/O instruction. WARNING: CPU: 23 PID: 1083 at arch/x86/kvm/x86.c:8039 emulator_pio_in_out+0x154/0x170 [kvm] Modules linked in: kvm_intel kvm irqbypass CPU: 23 UID: 1000 PID: 1083 Comm: repro Not tainted 6.16.0-rc5-c1610d2d66b1-next-vm #74 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:emulator_pio_in_out+0x154/0x170 [kvm] PKRU: 55555554 Call Trace: <TASK> kvm_fast_pio+0xd6/0x1d0 [kvm] vmx_handle_exit+0x149/0x610 [kvm_intel] kvm_arch_vcpu_ioctl_run+0xda8/0x1ac0 [kvm] kvm_vcpu_ioctl+0x244/0x8c0 [kvm] __x64_sys_ioctl+0x8a/0xd0 do_syscall_64+0x5d/0xc60 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK>
CVE-2025-40025 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on node footer for non inode dnode As syzbot reported below: ------------[ cut here ]------------ kernel BUG at fs/f2fs/file.c:1243! Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI CPU: 0 UID: 0 PID: 5354 Comm: syz.0.0 Not tainted 6.17.0-rc1-syzkaller-00211-g90d970cade8e #0 PREEMPT(full) RIP: 0010:f2fs_truncate_hole+0x69e/0x6c0 fs/f2fs/file.c:1243 Call Trace: <TASK> f2fs_punch_hole+0x2db/0x330 fs/f2fs/file.c:1306 f2fs_fallocate+0x546/0x990 fs/f2fs/file.c:2018 vfs_fallocate+0x666/0x7e0 fs/open.c:342 ksys_fallocate fs/open.c:366 [inline] __do_sys_fallocate fs/open.c:371 [inline] __se_sys_fallocate fs/open.c:369 [inline] __x64_sys_fallocate+0xc0/0x110 fs/open.c:369 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f1e65f8ebe9 w/ a fuzzed image, f2fs may encounter panic due to it detects inconsistent truncation range in direct node in f2fs_truncate_hole(). The root cause is: a non-inode dnode may has the same footer.ino and footer.nid, so the dnode will be parsed as an inode, then ADDRS_PER_PAGE() may return wrong blkaddr count which may be 923 typically, by chance, dn.ofs_in_node is equal to 923, then count can be calculated to 0 in below statement, later it will trigger panic w/ f2fs_bug_on(, count == 0 || ...). count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); This patch introduces a new node_type NODE_TYPE_NON_INODE, then allowing passing the new_type to sanity_check_node_footer in f2fs_get_node_folio() to detect corruption that a non-inode dnode has the same footer.ino and footer.nid. Scripts to reproduce: mkfs.f2fs -f /dev/vdb mount /dev/vdb /mnt/f2fs touch /mnt/f2fs/foo touch /mnt/f2fs/bar dd if=/dev/zero of=/mnt/f2fs/foo bs=1M count=8 umount /mnt/f2fs inject.f2fs --node --mb i_nid --nid 4 --idx 0 --val 5 /dev/vdb mount /dev/vdb /mnt/f2fs xfs_io /mnt/f2fs/foo -c "fpunch 6984k 4k"
CVE-2025-40019 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: essiv - Check ssize for decryption and in-place encryption Move the ssize check to the start in essiv_aead_crypt so that it's also checked for decryption and in-place encryption.
CVE-2025-40018 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipvs: Defer ip_vs_ftp unregister during netns cleanup On the netns cleanup path, __ip_vs_ftp_exit() may unregister ip_vs_ftp before connections with valid cp->app pointers are flushed, leading to a use-after-free. Fix this by introducing a global `exiting_module` flag, set to true in ip_vs_ftp_exit() before unregistering the pernet subsystem. In __ip_vs_ftp_exit(), skip ip_vs_ftp unregister if called during netns cleanup (when exiting_module is false) and defer it to __ip_vs_cleanup_batch(), which unregisters all apps after all connections are flushed. If called during module exit, unregister ip_vs_ftp immediately.
CVE-2025-40017 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: iris: Fix memory leak by freeing untracked persist buffer One internal buffer which is allocated only once per session was not being freed during session close because it was not being tracked as part of internal buffer list which resulted in a memory leak. Add the necessary logic to explicitly free the untracked internal buffer during session close to ensure all allocated memory is released properly.
CVE-2025-40016 1 Linux 1 Linux Kernel 2025-12-01 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Mark invalid entities with id UVC_INVALID_ENTITY_ID Per UVC 1.1+ specification 3.7.2, units and terminals must have a non-zero unique ID. ``` Each Unit and Terminal within the video function is assigned a unique identification number, the Unit ID (UID) or Terminal ID (TID), contained in the bUnitID or bTerminalID field of the descriptor. The value 0x00 is reserved for undefined ID, ``` If we add a new entity with id 0 or a duplicated ID, it will be marked as UVC_INVALID_ENTITY_ID. In a previous attempt commit 3dd075fe8ebb ("media: uvcvideo: Require entities to have a non-zero unique ID"), we ignored all the invalid units, this broke a lot of non-compatible cameras. Hopefully we are more lucky this time. This also prevents some syzkaller reproducers from triggering warnings due to a chain of entities referring to themselves. In one particular case, an Output Unit is connected to an Input Unit, both with the same ID of 1. But when looking up for the source ID of the Output Unit, that same entity is found instead of the input entity, which leads to such warnings. In another case, a backward chain was considered finished as the source ID was 0. Later on, that entity was found, but its pads were not valid. Here is a sample stack trace for one of those cases. [ 20.650953] usb 1-1: new high-speed USB device number 2 using dummy_hcd [ 20.830206] usb 1-1: Using ep0 maxpacket: 8 [ 20.833501] usb 1-1: config 0 descriptor?? [ 21.038518] usb 1-1: string descriptor 0 read error: -71 [ 21.038893] usb 1-1: Found UVC 0.00 device <unnamed> (2833:0201) [ 21.039299] uvcvideo 1-1:0.0: Entity type for entity Output 1 was not initialized! [ 21.041583] uvcvideo 1-1:0.0: Entity type for entity Input 1 was not initialized! [ 21.042218] ------------[ cut here ]------------ [ 21.042536] WARNING: CPU: 0 PID: 9 at drivers/media/mc/mc-entity.c:1147 media_create_pad_link+0x2c4/0x2e0 [ 21.043195] Modules linked in: [ 21.043535] CPU: 0 UID: 0 PID: 9 Comm: kworker/0:1 Not tainted 6.11.0-rc7-00030-g3480e43aeccf #444 [ 21.044101] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 [ 21.044639] Workqueue: usb_hub_wq hub_event [ 21.045100] RIP: 0010:media_create_pad_link+0x2c4/0x2e0 [ 21.045508] Code: fe e8 20 01 00 00 b8 f4 ff ff ff 48 83 c4 30 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc 0f 0b eb e9 0f 0b eb 0a 0f 0b eb 06 <0f> 0b eb 02 0f 0b b8 ea ff ff ff eb d4 66 2e 0f 1f 84 00 00 00 00 [ 21.046801] RSP: 0018:ffffc9000004b318 EFLAGS: 00010246 [ 21.047227] RAX: ffff888004e5d458 RBX: 0000000000000000 RCX: ffffffff818fccf1 [ 21.047719] RDX: 000000000000007b RSI: 0000000000000000 RDI: ffff888004313290 [ 21.048241] RBP: ffff888004313290 R08: 0001ffffffffffff R09: 0000000000000000 [ 21.048701] R10: 0000000000000013 R11: 0001888004313290 R12: 0000000000000003 [ 21.049138] R13: ffff888004313080 R14: ffff888004313080 R15: 0000000000000000 [ 21.049648] FS: 0000000000000000(0000) GS:ffff88803ec00000(0000) knlGS:0000000000000000 [ 21.050271] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 21.050688] CR2: 0000592cc27635b0 CR3: 000000000431c000 CR4: 0000000000750ef0 [ 21.051136] PKRU: 55555554 [ 21.051331] Call Trace: [ 21.051480] <TASK> [ 21.051611] ? __warn+0xc4/0x210 [ 21.051861] ? media_create_pad_link+0x2c4/0x2e0 [ 21.052252] ? report_bug+0x11b/0x1a0 [ 21.052540] ? trace_hardirqs_on+0x31/0x40 [ 21.052901] ? handle_bug+0x3d/0x70 [ 21.053197] ? exc_invalid_op+0x1a/0x50 [ 21.053511] ? asm_exc_invalid_op+0x1a/0x20 [ 21.053924] ? media_create_pad_link+0x91/0x2e0 [ 21.054364] ? media_create_pad_link+0x2c4/0x2e0 [ 21.054834] ? media_create_pad_link+0x91/0x2e0 [ 21.055131] ? _raw_spin_unlock+0x1e/0x40 [ 21.055441] ? __v4l2_device_register_subdev+0x202/0x210 [ 21.055837] uvc_mc_register_entities+0x358/0x400 [ 21.056144] uvc_register_chains+0x1 ---truncated---
CVE-2025-40015 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: stm32-csi: Fix dereference before NULL check In 'stm32_csi_start', 'csidev->s_subdev' is dereferenced directly while assigning a value to the 'src_pad'. However the same value is being checked against NULL at a later point of time indicating that there are chances that the value can be NULL. Move the dereference after the NULL check.
CVE-2025-40013 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: audioreach: fix potential null pointer dereference It is possible that the topology parsing function audioreach_widget_load_module_common() could return NULL or an error pointer. Add missing NULL check so that we do not dereference it.
CVE-2025-40004 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/9p: Fix buffer overflow in USB transport layer A buffer overflow vulnerability exists in the USB 9pfs transport layer where inconsistent size validation between packet header parsing and actual data copying allows a malicious USB host to overflow heap buffers. The issue occurs because: - usb9pfs_rx_header() validates only the declared size in packet header - usb9pfs_rx_complete() uses req->actual (actual received bytes) for memcpy This allows an attacker to craft packets with small declared size (bypassing validation) but large actual payload (triggering overflow in memcpy). Add validation in usb9pfs_rx_complete() to ensure req->actual does not exceed the buffer capacity before copying data.