| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: simplefb: Fix use after free in simplefb_detach_genpds()
The pm_domain cleanup can not be devres managed as it uses struct
simplefb_par which is allocated within struct fb_info by
framebuffer_alloc(). This allocation is explicitly freed by
unregister_framebuffer() in simplefb_remove().
Devres managed cleanup runs after the device remove call and thus can no
longer access struct simplefb_par.
Call simplefb_detach_genpds() explicitly from simplefb_destroy() like
the cleanup functions for clocks and regulators.
Fixes an use after free on M2 Mac mini during
aperture_remove_conflicting_devices() using the downstream asahi kernel
with Debian's kernel config. For unknown reasons this started to
consistently dereference an invalid pointer in v6.16.3 based kernels.
[ 6.736134] BUG: KASAN: slab-use-after-free in simplefb_detach_genpds+0x58/0x220
[ 6.743545] Read of size 4 at addr ffff8000304743f0 by task (udev-worker)/227
[ 6.750697]
[ 6.752182] CPU: 6 UID: 0 PID: 227 Comm: (udev-worker) Tainted: G S 6.16.3-asahi+ #16 PREEMPTLAZY
[ 6.752186] Tainted: [S]=CPU_OUT_OF_SPEC
[ 6.752187] Hardware name: Apple Mac mini (M2, 2023) (DT)
[ 6.752189] Call trace:
[ 6.752190] show_stack+0x34/0x98 (C)
[ 6.752194] dump_stack_lvl+0x60/0x80
[ 6.752197] print_report+0x17c/0x4d8
[ 6.752201] kasan_report+0xb4/0x100
[ 6.752206] __asan_report_load4_noabort+0x20/0x30
[ 6.752209] simplefb_detach_genpds+0x58/0x220
[ 6.752213] devm_action_release+0x50/0x98
[ 6.752216] release_nodes+0xd0/0x2c8
[ 6.752219] devres_release_all+0xfc/0x178
[ 6.752221] device_unbind_cleanup+0x28/0x168
[ 6.752224] device_release_driver_internal+0x34c/0x470
[ 6.752228] device_release_driver+0x20/0x38
[ 6.752231] bus_remove_device+0x1b0/0x380
[ 6.752234] device_del+0x314/0x820
[ 6.752238] platform_device_del+0x3c/0x1e8
[ 6.752242] platform_device_unregister+0x20/0x50
[ 6.752246] aperture_detach_platform_device+0x1c/0x30
[ 6.752250] aperture_detach_devices+0x16c/0x290
[ 6.752253] aperture_remove_conflicting_devices+0x34/0x50
...
[ 6.752343]
[ 6.967409] Allocated by task 62:
[ 6.970724] kasan_save_stack+0x3c/0x70
[ 6.974560] kasan_save_track+0x20/0x40
[ 6.978397] kasan_save_alloc_info+0x40/0x58
[ 6.982670] __kasan_kmalloc+0xd4/0xd8
[ 6.986420] __kmalloc_noprof+0x194/0x540
[ 6.990432] framebuffer_alloc+0xc8/0x130
[ 6.994444] simplefb_probe+0x258/0x2378
...
[ 7.054356]
[ 7.055838] Freed by task 227:
[ 7.058891] kasan_save_stack+0x3c/0x70
[ 7.062727] kasan_save_track+0x20/0x40
[ 7.066565] kasan_save_free_info+0x4c/0x80
[ 7.070751] __kasan_slab_free+0x6c/0xa0
[ 7.074675] kfree+0x10c/0x380
[ 7.077727] framebuffer_release+0x5c/0x90
[ 7.081826] simplefb_destroy+0x1b4/0x2c0
[ 7.085837] put_fb_info+0x98/0x100
[ 7.089326] unregister_framebuffer+0x178/0x320
[ 7.093861] simplefb_remove+0x3c/0x60
[ 7.097611] platform_remove+0x60/0x98
[ 7.101361] device_remove+0xb8/0x160
[ 7.105024] device_release_driver_internal+0x2fc/0x470
[ 7.110256] device_release_driver+0x20/0x38
[ 7.114529] bus_remove_device+0x1b0/0x380
[ 7.118628] device_del+0x314/0x820
[ 7.122116] platform_device_del+0x3c/0x1e8
[ 7.126302] platform_device_unregister+0x20/0x50
[ 7.131012] aperture_detach_platform_device+0x1c/0x30
[ 7.136157] aperture_detach_devices+0x16c/0x290
[ 7.140779] aperture_remove_conflicting_devices+0x34/0x50
... |
| In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: fix possible map leak in fastrpc_put_args
copy_to_user() failure would cause an early return without cleaning up
the fdlist, which has been updated by the DSP. This could lead to map
leak. Fix this by redirecting to a cleanup path on failure, ensuring
that all mapped buffers are properly released before returning. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: uinput - zero-initialize uinput_ff_upload_compat to avoid info leak
Struct ff_effect_compat is embedded twice inside
uinput_ff_upload_compat, contains internal padding. In particular, there
is a hole after struct ff_replay to satisfy alignment requirements for
the following union member. Without clearing the structure,
copy_to_user() may leak stack data to userspace.
Initialize ff_up_compat to zero before filling valid fields. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/AER: Avoid NULL pointer dereference in aer_ratelimit()
When platform firmware supplies error information to the OS, e.g., via the
ACPI APEI GHES mechanism, it may identify an error source device that
doesn't advertise an AER Capability and therefore dev->aer_info, which
contains AER stats and ratelimiting data, is NULL.
pci_dev_aer_stats_incr() already checks dev->aer_info for NULL, but
aer_ratelimit() did not, leading to NULL pointer dereferences like this one
from the URL below:
{1}[Hardware Error]: Hardware error from APEI Generic Hardware Error Source: 0
{1}[Hardware Error]: event severity: corrected
{1}[Hardware Error]: device_id: 0000:00:00.0
{1}[Hardware Error]: vendor_id: 0x8086, device_id: 0x2020
{1}[Hardware Error]: aer_cor_status: 0x00001000, aer_cor_mask: 0x00002000
BUG: kernel NULL pointer dereference, address: 0000000000000264
RIP: 0010:___ratelimit+0xc/0x1b0
pci_print_aer+0x141/0x360
aer_recover_work_func+0xb5/0x130
[8086:2020] is an Intel "Sky Lake-E DMI3 Registers" device that claims to
be a Root Port but does not advertise an AER Capability.
Add a NULL check in aer_ratelimit() to avoid the NULL pointer dereference.
Note that this also prevents ratelimiting these events from GHES.
[bhelgaas: add crash details to commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
remoteproc: pru: Fix potential NULL pointer dereference in pru_rproc_set_ctable()
pru_rproc_set_ctable() accessed rproc->priv before the IS_ERR_OR_NULL
check, which could lead to a null pointer dereference. Move the pru
assignment, ensuring we never dereference a NULL rproc pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: pci-epf-test: Add NULL check for DMA channels before release
The fields dma_chan_tx and dma_chan_rx of the struct pci_epf_test can be
NULL even after EPF initialization. Then it is prudent to check that
they have non-NULL values before releasing the channels. Add the checks
in pci_epf_test_clean_dma_chan().
Without the checks, NULL pointer dereferences happen and they can lead
to a kernel panic in some cases:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000050
Call trace:
dma_release_channel+0x2c/0x120 (P)
pci_epf_test_epc_deinit+0x94/0xc0 [pci_epf_test]
pci_epc_deinit_notify+0x74/0xc0
tegra_pcie_ep_pex_rst_irq+0x250/0x5d8
irq_thread_fn+0x34/0xb8
irq_thread+0x18c/0x2e8
kthread+0x14c/0x210
ret_from_fork+0x10/0x20
[mani: trimmed the stack trace] |
| In the Linux kernel, the following vulnerability has been resolved:
tee: fix register_shm_helper()
In register_shm_helper(), fix incorrect error handling for a call to
iov_iter_extract_pages(). A case is missing for when
iov_iter_extract_pages() only got some pages and return a number larger
than 0, but not the requested amount.
This fixes a possible NULL pointer dereference following a bad input from
ioctl(TEE_IOC_SHM_REGISTER) where parts of the buffer isn't mapped. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: check the return value of pinmux_ops::get_function_name()
While the API contract in docs doesn't specify it explicitly, the
generic implementation of the get_function_name() callback from struct
pinmux_ops - pinmux_generic_get_function_name() - can fail and return
NULL. This is already checked in pinmux_check_ops() so add a similar
check in pinmux_func_name_to_selector() instead of passing the returned
pointer right down to strcmp() where the NULL can get dereferenced. This
is normal operation when adding new pinfunctions. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: fsl-mc: Check return value of platform_get_resource()
platform_get_resource() returns NULL in case of failure, so check its
return value and propagate the error in order to prevent NULL pointer
dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix double-free in dbitmap
A process might fail to allocate a new bitmap when trying to expand its
proc->dmap. In that case, dbitmap_grow() fails and frees the old bitmap
via dbitmap_free(). However, the driver calls dbitmap_free() again when
the same process terminates, leading to a double-free error:
==================================================================
BUG: KASAN: double-free in binder_proc_dec_tmpref+0x2e0/0x55c
Free of addr ffff00000b7c1420 by task kworker/9:1/209
CPU: 9 UID: 0 PID: 209 Comm: kworker/9:1 Not tainted 6.17.0-rc6-dirty #5 PREEMPT
Hardware name: linux,dummy-virt (DT)
Workqueue: events binder_deferred_func
Call trace:
kfree+0x164/0x31c
binder_proc_dec_tmpref+0x2e0/0x55c
binder_deferred_func+0xc24/0x1120
process_one_work+0x520/0xba4
[...]
Allocated by task 448:
__kmalloc_noprof+0x178/0x3c0
bitmap_zalloc+0x24/0x30
binder_open+0x14c/0xc10
[...]
Freed by task 449:
kfree+0x184/0x31c
binder_inc_ref_for_node+0xb44/0xe44
binder_transaction+0x29b4/0x7fbc
binder_thread_write+0x1708/0x442c
binder_ioctl+0x1b50/0x2900
[...]
==================================================================
Fix this issue by marking proc->map NULL in dbitmap_free(). |
| In the Linux kernel, the following vulnerability has been resolved:
net/9p: fix double req put in p9_fd_cancelled
Syzkaller reports a KASAN issue as below:
general protection fault, probably for non-canonical address 0xfbd59c0000000021: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: maybe wild-memory-access in range [0xdead000000000108-0xdead00000000010f]
CPU: 0 PID: 5083 Comm: syz-executor.2 Not tainted 6.1.134-syzkaller-00037-g855bd1d7d838 #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:__list_del include/linux/list.h:114 [inline]
RIP: 0010:__list_del_entry include/linux/list.h:137 [inline]
RIP: 0010:list_del include/linux/list.h:148 [inline]
RIP: 0010:p9_fd_cancelled+0xe9/0x200 net/9p/trans_fd.c:734
Call Trace:
<TASK>
p9_client_flush+0x351/0x440 net/9p/client.c:614
p9_client_rpc+0xb6b/0xc70 net/9p/client.c:734
p9_client_version net/9p/client.c:920 [inline]
p9_client_create+0xb51/0x1240 net/9p/client.c:1027
v9fs_session_init+0x1f0/0x18f0 fs/9p/v9fs.c:408
v9fs_mount+0xba/0xcb0 fs/9p/vfs_super.c:126
legacy_get_tree+0x108/0x220 fs/fs_context.c:632
vfs_get_tree+0x8e/0x300 fs/super.c:1573
do_new_mount fs/namespace.c:3056 [inline]
path_mount+0x6a6/0x1e90 fs/namespace.c:3386
do_mount fs/namespace.c:3399 [inline]
__do_sys_mount fs/namespace.c:3607 [inline]
__se_sys_mount fs/namespace.c:3584 [inline]
__x64_sys_mount+0x283/0x300 fs/namespace.c:3584
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
This happens because of a race condition between:
- The 9p client sending an invalid flush request and later cleaning it up;
- The 9p client in p9_read_work() canceled all pending requests.
Thread 1 Thread 2
...
p9_client_create()
...
p9_fd_create()
...
p9_conn_create()
...
// start Thread 2
INIT_WORK(&m->rq, p9_read_work);
p9_read_work()
...
p9_client_rpc()
...
...
p9_conn_cancel()
...
spin_lock(&m->req_lock);
...
p9_fd_cancelled()
...
...
spin_unlock(&m->req_lock);
// status rewrite
p9_client_cb(m->client, req, REQ_STATUS_ERROR)
// first remove
list_del(&req->req_list);
...
spin_lock(&m->req_lock)
...
// second remove
list_del(&req->req_list);
spin_unlock(&m->req_lock)
...
Commit 74d6a5d56629 ("9p/trans_fd: Fix concurrency del of req_list in
p9_fd_cancelled/p9_read_work") fixes a concurrency issue in the 9p filesystem
client where the req_list could be deleted simultaneously by both
p9_read_work and p9_fd_cancelled functions, but for the case where req->status
equals REQ_STATUS_RCVD.
Update the check for req->status in p9_fd_cancelled to skip processing not
just received requests, but anything that is not SENT, as whatever
changed the state from SENT also removed the request from its list.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
[updated the check from status == RECV || status == ERROR to status != SENT] |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Don't (re)check L1 intercepts when completing userspace I/O
When completing emulation of instruction that generated a userspace exit
for I/O, don't recheck L1 intercepts as KVM has already finished that
phase of instruction execution, i.e. has already committed to allowing L2
to perform I/O. If L1 (or host userspace) modifies the I/O permission
bitmaps during the exit to userspace, KVM will treat the access as being
intercepted despite already having emulated the I/O access.
Pivot on EMULTYPE_NO_DECODE to detect that KVM is completing emulation.
Of the three users of EMULTYPE_NO_DECODE, only complete_emulated_io() (the
intended "recipient") can reach the code in question. gp_interception()'s
use is mutually exclusive with is_guest_mode(), and
complete_emulated_insn_gp() unconditionally pairs EMULTYPE_NO_DECODE with
EMULTYPE_SKIP.
The bad behavior was detected by a syzkaller program that toggles port I/O
interception during the userspace I/O exit, ultimately resulting in a WARN
on vcpu->arch.pio.count being non-zero due to KVM no completing emulation
of the I/O instruction.
WARNING: CPU: 23 PID: 1083 at arch/x86/kvm/x86.c:8039 emulator_pio_in_out+0x154/0x170 [kvm]
Modules linked in: kvm_intel kvm irqbypass
CPU: 23 UID: 1000 PID: 1083 Comm: repro Not tainted 6.16.0-rc5-c1610d2d66b1-next-vm #74 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:emulator_pio_in_out+0x154/0x170 [kvm]
PKRU: 55555554
Call Trace:
<TASK>
kvm_fast_pio+0xd6/0x1d0 [kvm]
vmx_handle_exit+0x149/0x610 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0xda8/0x1ac0 [kvm]
kvm_vcpu_ioctl+0x244/0x8c0 [kvm]
__x64_sys_ioctl+0x8a/0xd0
do_syscall_64+0x5d/0xc60
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on node footer for non inode dnode
As syzbot reported below:
------------[ cut here ]------------
kernel BUG at fs/f2fs/file.c:1243!
Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 5354 Comm: syz.0.0 Not tainted 6.17.0-rc1-syzkaller-00211-g90d970cade8e #0 PREEMPT(full)
RIP: 0010:f2fs_truncate_hole+0x69e/0x6c0 fs/f2fs/file.c:1243
Call Trace:
<TASK>
f2fs_punch_hole+0x2db/0x330 fs/f2fs/file.c:1306
f2fs_fallocate+0x546/0x990 fs/f2fs/file.c:2018
vfs_fallocate+0x666/0x7e0 fs/open.c:342
ksys_fallocate fs/open.c:366 [inline]
__do_sys_fallocate fs/open.c:371 [inline]
__se_sys_fallocate fs/open.c:369 [inline]
__x64_sys_fallocate+0xc0/0x110 fs/open.c:369
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f1e65f8ebe9
w/ a fuzzed image, f2fs may encounter panic due to it detects inconsistent
truncation range in direct node in f2fs_truncate_hole().
The root cause is: a non-inode dnode may has the same footer.ino and
footer.nid, so the dnode will be parsed as an inode, then ADDRS_PER_PAGE()
may return wrong blkaddr count which may be 923 typically, by chance,
dn.ofs_in_node is equal to 923, then count can be calculated to 0 in below
statement, later it will trigger panic w/ f2fs_bug_on(, count == 0 || ...).
count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
This patch introduces a new node_type NODE_TYPE_NON_INODE, then allowing
passing the new_type to sanity_check_node_footer in f2fs_get_node_folio()
to detect corruption that a non-inode dnode has the same footer.ino and
footer.nid.
Scripts to reproduce:
mkfs.f2fs -f /dev/vdb
mount /dev/vdb /mnt/f2fs
touch /mnt/f2fs/foo
touch /mnt/f2fs/bar
dd if=/dev/zero of=/mnt/f2fs/foo bs=1M count=8
umount /mnt/f2fs
inject.f2fs --node --mb i_nid --nid 4 --idx 0 --val 5 /dev/vdb
mount /dev/vdb /mnt/f2fs
xfs_io /mnt/f2fs/foo -c "fpunch 6984k 4k" |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: essiv - Check ssize for decryption and in-place encryption
Move the ssize check to the start in essiv_aead_crypt so that
it's also checked for decryption and in-place encryption. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvs: Defer ip_vs_ftp unregister during netns cleanup
On the netns cleanup path, __ip_vs_ftp_exit() may unregister ip_vs_ftp
before connections with valid cp->app pointers are flushed, leading to a
use-after-free.
Fix this by introducing a global `exiting_module` flag, set to true in
ip_vs_ftp_exit() before unregistering the pernet subsystem. In
__ip_vs_ftp_exit(), skip ip_vs_ftp unregister if called during netns
cleanup (when exiting_module is false) and defer it to
__ip_vs_cleanup_batch(), which unregisters all apps after all connections
are flushed. If called during module exit, unregister ip_vs_ftp
immediately. |
| In the Linux kernel, the following vulnerability has been resolved:
media: iris: Fix memory leak by freeing untracked persist buffer
One internal buffer which is allocated only once per session was not
being freed during session close because it was not being tracked as
part of internal buffer list which resulted in a memory leak.
Add the necessary logic to explicitly free the untracked internal buffer
during session close to ensure all allocated memory is released
properly. |
| In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Mark invalid entities with id UVC_INVALID_ENTITY_ID
Per UVC 1.1+ specification 3.7.2, units and terminals must have a non-zero
unique ID.
```
Each Unit and Terminal within the video function is assigned a unique
identification number, the Unit ID (UID) or Terminal ID (TID), contained in
the bUnitID or bTerminalID field of the descriptor. The value 0x00 is
reserved for undefined ID,
```
If we add a new entity with id 0 or a duplicated ID, it will be marked
as UVC_INVALID_ENTITY_ID.
In a previous attempt commit 3dd075fe8ebb ("media: uvcvideo: Require
entities to have a non-zero unique ID"), we ignored all the invalid units,
this broke a lot of non-compatible cameras. Hopefully we are more lucky
this time.
This also prevents some syzkaller reproducers from triggering warnings due
to a chain of entities referring to themselves. In one particular case, an
Output Unit is connected to an Input Unit, both with the same ID of 1. But
when looking up for the source ID of the Output Unit, that same entity is
found instead of the input entity, which leads to such warnings.
In another case, a backward chain was considered finished as the source ID
was 0. Later on, that entity was found, but its pads were not valid.
Here is a sample stack trace for one of those cases.
[ 20.650953] usb 1-1: new high-speed USB device number 2 using dummy_hcd
[ 20.830206] usb 1-1: Using ep0 maxpacket: 8
[ 20.833501] usb 1-1: config 0 descriptor??
[ 21.038518] usb 1-1: string descriptor 0 read error: -71
[ 21.038893] usb 1-1: Found UVC 0.00 device <unnamed> (2833:0201)
[ 21.039299] uvcvideo 1-1:0.0: Entity type for entity Output 1 was not initialized!
[ 21.041583] uvcvideo 1-1:0.0: Entity type for entity Input 1 was not initialized!
[ 21.042218] ------------[ cut here ]------------
[ 21.042536] WARNING: CPU: 0 PID: 9 at drivers/media/mc/mc-entity.c:1147 media_create_pad_link+0x2c4/0x2e0
[ 21.043195] Modules linked in:
[ 21.043535] CPU: 0 UID: 0 PID: 9 Comm: kworker/0:1 Not tainted 6.11.0-rc7-00030-g3480e43aeccf #444
[ 21.044101] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
[ 21.044639] Workqueue: usb_hub_wq hub_event
[ 21.045100] RIP: 0010:media_create_pad_link+0x2c4/0x2e0
[ 21.045508] Code: fe e8 20 01 00 00 b8 f4 ff ff ff 48 83 c4 30 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc 0f 0b eb e9 0f 0b eb 0a 0f 0b eb 06 <0f> 0b eb 02 0f 0b b8 ea ff ff ff eb d4 66 2e 0f 1f 84 00 00 00 00
[ 21.046801] RSP: 0018:ffffc9000004b318 EFLAGS: 00010246
[ 21.047227] RAX: ffff888004e5d458 RBX: 0000000000000000 RCX: ffffffff818fccf1
[ 21.047719] RDX: 000000000000007b RSI: 0000000000000000 RDI: ffff888004313290
[ 21.048241] RBP: ffff888004313290 R08: 0001ffffffffffff R09: 0000000000000000
[ 21.048701] R10: 0000000000000013 R11: 0001888004313290 R12: 0000000000000003
[ 21.049138] R13: ffff888004313080 R14: ffff888004313080 R15: 0000000000000000
[ 21.049648] FS: 0000000000000000(0000) GS:ffff88803ec00000(0000) knlGS:0000000000000000
[ 21.050271] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 21.050688] CR2: 0000592cc27635b0 CR3: 000000000431c000 CR4: 0000000000750ef0
[ 21.051136] PKRU: 55555554
[ 21.051331] Call Trace:
[ 21.051480] <TASK>
[ 21.051611] ? __warn+0xc4/0x210
[ 21.051861] ? media_create_pad_link+0x2c4/0x2e0
[ 21.052252] ? report_bug+0x11b/0x1a0
[ 21.052540] ? trace_hardirqs_on+0x31/0x40
[ 21.052901] ? handle_bug+0x3d/0x70
[ 21.053197] ? exc_invalid_op+0x1a/0x50
[ 21.053511] ? asm_exc_invalid_op+0x1a/0x20
[ 21.053924] ? media_create_pad_link+0x91/0x2e0
[ 21.054364] ? media_create_pad_link+0x2c4/0x2e0
[ 21.054834] ? media_create_pad_link+0x91/0x2e0
[ 21.055131] ? _raw_spin_unlock+0x1e/0x40
[ 21.055441] ? __v4l2_device_register_subdev+0x202/0x210
[ 21.055837] uvc_mc_register_entities+0x358/0x400
[ 21.056144] uvc_register_chains+0x1
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
media: stm32-csi: Fix dereference before NULL check
In 'stm32_csi_start', 'csidev->s_subdev' is dereferenced directly while
assigning a value to the 'src_pad'. However the same value is being
checked against NULL at a later point of time indicating that there
are chances that the value can be NULL.
Move the dereference after the NULL check. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: audioreach: fix potential null pointer dereference
It is possible that the topology parsing function
audioreach_widget_load_module_common() could return NULL or an error
pointer. Add missing NULL check so that we do not dereference it. |
| In the Linux kernel, the following vulnerability has been resolved:
net/9p: Fix buffer overflow in USB transport layer
A buffer overflow vulnerability exists in the USB 9pfs transport layer
where inconsistent size validation between packet header parsing and
actual data copying allows a malicious USB host to overflow heap buffers.
The issue occurs because:
- usb9pfs_rx_header() validates only the declared size in packet header
- usb9pfs_rx_complete() uses req->actual (actual received bytes) for
memcpy
This allows an attacker to craft packets with small declared size
(bypassing validation) but large actual payload (triggering overflow
in memcpy).
Add validation in usb9pfs_rx_complete() to ensure req->actual does not
exceed the buffer capacity before copying data. |