CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A privilege escalation flaw from host to domain administrator was found in FreeIPA. This vulnerability is similar to CVE-2025-4404, where it fails to validate the uniqueness of the krbCanonicalName. While the previously released version added validations for the admin@REALM credential, FreeIPA still does not validate the root@REALM canonical name, which can also be used as the realm administrator's name. This flaw allows an attacker to perform administrative tasks over the REALM, leading to access to sensitive data and sensitive data exfiltration. |
Local privilege escalation due to insecure XPC service configuration. The following products are affected: Acronis True Image (macOS) before build 42389, Acronis True Image for SanDisk (macOS) before build 42198, Acronis True Image for Western Digital (macOS) before build 42197. |
The ZoloBlocks plugin for WordPress is vulnerable to Stored Cross-Site Scripting via multiple Gutenberg blocks in versions up to, and including, 2.3.10. This is due to insufficient input sanitization and output escaping on user-supplied attributes within multiple block components including Google Maps markers, Lightbox captions, Image Gallery data attributes, Progress Pie prefix/suffix fields, and Text Path URL fields. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
Issue summary: An application using the OpenSSL HTTP client API functions may
trigger an out-of-bounds read if the 'no_proxy' environment variable is set and
the host portion of the authority component of the HTTP URL is an IPv6 address.
Impact summary: An out-of-bounds read can trigger a crash which leads to
Denial of Service for an application.
The OpenSSL HTTP client API functions can be used directly by applications
but they are also used by the OCSP client functions and CMP (Certificate
Management Protocol) client implementation in OpenSSL. However the URLs used
by these implementations are unlikely to be controlled by an attacker.
In this vulnerable code the out of bounds read can only trigger a crash.
Furthermore the vulnerability requires an attacker-controlled URL to be
passed from an application to the OpenSSL function and the user has to have
a 'no_proxy' environment variable set. For the aforementioned reasons the
issue was assessed as Low severity.
The vulnerable code was introduced in the following patch releases:
3.0.16, 3.1.8, 3.2.4, 3.3.3, 3.4.0 and 3.5.0.
The FIPS modules in 3.5, 3.4, 3.3, 3.2, 3.1 and 3.0 are not affected by this
issue, as the HTTP client implementation is outside the OpenSSL FIPS module
boundary. |
The Custom Searchable Data Entry System plugin for WordPress is vulnerable to unauthenticated database wiping in versions up to, and including 1.7.1, due to a missing capability check and lack of sufficient validation on the ghazale_sds_delete_entries_table_row() function. This makes it possible for unauthenticated attackers to completely wipe database tables such as wp_users. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix UBSAN shift-out-of-bounds warning
If get_num_sdma_queues or get_num_xgmi_sdma_queues is 0, we end up
doing a shift operation where the number of bits shifted equals
number of bits in the operand. This behaviour is undefined.
Set num_sdma_queues or num_xgmi_sdma_queues to ULLONG_MAX, if the
count is >= number of bits in the operand.
Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/1472 |
In the Linux kernel, the following vulnerability has been resolved:
rpmsg: char: Avoid double destroy of default endpoint
The rpmsg_dev_remove() in rpmsg_core is the place for releasing
this default endpoint.
So need to avoid destroying the default endpoint in
rpmsg_chrdev_eptdev_destroy(), this should be the same as
rpmsg_eptdev_release(). Otherwise there will be double destroy
issue that ept->refcount report warning:
refcount_t: underflow; use-after-free.
Call trace:
refcount_warn_saturate+0xf8/0x150
virtio_rpmsg_destroy_ept+0xd4/0xec
rpmsg_dev_remove+0x60/0x70
The issue can be reproduced by stopping remoteproc before
closing the /dev/rpmsgX. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: libsas: Fix use-after-free bug in smp_execute_task_sg()
When executing SMP task failed, the smp_execute_task_sg() calls del_timer()
to delete "slow_task->timer". However, if the timer handler
sas_task_internal_timedout() is running, the del_timer() in
smp_execute_task_sg() will not stop it and a UAF will happen. The process
is shown below:
(thread 1) | (thread 2)
smp_execute_task_sg() | sas_task_internal_timedout()
... |
del_timer() |
... | ...
sas_free_task(task) |
kfree(task->slow_task) //FREE|
| task->slow_task->... //USE
Fix by calling del_timer_sync() in smp_execute_task_sg(), which makes sure
the timer handler have finished before the "task->slow_task" is
deallocated. |
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage()
There is an use-after-free reported by KASAN:
BUG: KASAN: use-after-free in acpi_ut_remove_reference+0x3b/0x82
Read of size 1 at addr ffff888112afc460 by task modprobe/2111
CPU: 0 PID: 2111 Comm: modprobe Not tainted 6.1.0-rc7-dirty
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
Call Trace:
<TASK>
kasan_report+0xae/0xe0
acpi_ut_remove_reference+0x3b/0x82
acpi_ut_copy_iobject_to_iobject+0x3be/0x3d5
acpi_ds_store_object_to_local+0x15d/0x3a0
acpi_ex_store+0x78d/0x7fd
acpi_ex_opcode_1A_1T_1R+0xbe4/0xf9b
acpi_ps_parse_aml+0x217/0x8d5
...
</TASK>
The root cause of the problem is that the acpi_operand_object
is freed when acpi_ut_walk_package_tree() fails in
acpi_ut_copy_ipackage_to_ipackage(), lead to repeated release in
acpi_ut_copy_iobject_to_iobject(). The problem was introduced
by "8aa5e56eeb61" commit, this commit is to fix memory leak in
acpi_ut_copy_iobject_to_iobject(), repeatedly adding remove
operation, lead to "acpi_operand_object" used after free.
Fix it by removing acpi_ut_remove_reference() in
acpi_ut_copy_ipackage_to_ipackage(). acpi_ut_copy_ipackage_to_ipackage()
is called to copy an internal package object into another internal
package object, when it fails, the memory of acpi_operand_object
should be freed by the caller. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: resource leaks at mt7921_check_offload_capability()
Fixed coverity issue with resource leaks at variable "fw" going out of
scope leaks the storage it points to mt7921_check_offload_capability().
Addresses-Coverity-ID: 1527806 ("Resource leaks") |
In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Fix copy_xstate_to_uabi() to copy init states correctly
When an extended state component is not present in fpstate, but in init
state, the function copies from init_fpstate via copy_feature().
But, dynamic states are not present in init_fpstate because of all-zeros
init states. Then retrieving them from init_fpstate will explode like this:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
RIP: 0010:memcpy_erms+0x6/0x10
? __copy_xstate_to_uabi_buf+0x381/0x870
fpu_copy_guest_fpstate_to_uabi+0x28/0x80
kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm]
? __this_cpu_preempt_check+0x13/0x20
? vmx_vcpu_put+0x2e/0x260 [kvm_intel]
kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? __fget_light+0xd4/0x130
__x64_sys_ioctl+0xe3/0x910
? debug_smp_processor_id+0x17/0x20
? fpregs_assert_state_consistent+0x27/0x50
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Adjust the 'mask' to zero out the userspace buffer for the features that
are not available both from fpstate and from init_fpstate.
The dynamic features depend on the compacted XSAVE format. Ensure it is
enabled before reading XCOMP_BV in init_fpstate. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix off-by-one errors in fast-commit block filling
Due to several different off-by-one errors, or perhaps due to a late
change in design that wasn't fully reflected in the code that was
actually merged, there are several very strange constraints on how
fast-commit blocks are filled with tlv entries:
- tlvs must start at least 10 bytes before the end of the block, even
though the minimum tlv length is 8. Otherwise, the replay code will
ignore them. (BUG: ext4_fc_reserve_space() could violate this
requirement if called with a len of blocksize - 9 or blocksize - 8.
Fortunately, this doesn't seem to happen currently.)
- tlvs must end at least 1 byte before the end of the block. Otherwise
the replay code will consider them to be invalid. This quirk
contributed to a bug (fixed by an earlier commit) where uninitialized
memory was being leaked to disk in the last byte of blocks.
Also, strangely these constraints don't apply to the replay code in
e2fsprogs, which will accept any tlvs in the blocks (with no bounds
checks at all, but that is a separate issue...).
Given that this all seems to be a bug, let's fix it by just filling
blocks with tlv entries in the natural way.
Note that old kernels will be unable to replay fast-commit journals
created by kernels that have this commit. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: aoa: i2sbus: fix possible memory leak in i2sbus_add_dev()
dev_set_name() in soundbus_add_one() allocates memory for name, it need be
freed when of_device_register() fails, call soundbus_dev_put() to give up
the reference that hold in device_initialize(), so that it can be freed in
kobject_cleanup() when the refcount hit to 0. And other resources are also
freed in i2sbus_release_dev(), so it can return 0 directly. |
In the Linux kernel, the following vulnerability has been resolved:
efi: ssdt: Don't free memory if ACPI table was loaded successfully
Amadeusz reports KASAN use-after-free errors introduced by commit
3881ee0b1edc ("efi: avoid efivars layer when loading SSDTs from
variables"). The problem appears to be that the memory that holds the
new ACPI table is now freed unconditionally, instead of only when the
ACPI core reported a failure to load the table.
So let's fix this, by omitting the kfree() on success. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: don't set up encryption key during jbd2 transaction
Commit a80f7fcf1867 ("ext4: fixup ext4_fc_track_* functions' signature")
extended the scope of the transaction in ext4_unlink() too far, making
it include the call to ext4_find_entry(). However, ext4_find_entry()
can deadlock when called from within a transaction because it may need
to set up the directory's encryption key.
Fix this by restoring the transaction to its original scope. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8173: Enable IRQ when pdata is ready
If the device does not come straight from reset, we might receive an IRQ
before we are ready to handle it.
[ 2.334737] Unable to handle kernel read from unreadable memory at virtual address 00000000000001e4
[ 2.522601] Call trace:
[ 2.525040] regmap_read+0x1c/0x80
[ 2.528434] mt8173_afe_irq_handler+0x40/0xf0
...
[ 2.598921] start_kernel+0x338/0x42c |
In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Validate the box size for the snooped cursor
Invalid userspace dma surface copies could potentially overflow
the memcpy from the surface to the snooped image leading to crashes.
To fix it the dimensions of the copybox have to be validated
against the expected size of the snooped cursor. |
In the Linux kernel, the following vulnerability has been resolved:
drm/rockchip: lvds: fix PM usage counter unbalance in poweron
pm_runtime_get_sync will increment pm usage counter even it failed.
Forgetting to putting operation will result in reference leak here.
We fix it by replacing it with the newest pm_runtime_resume_and_get
to keep usage counter balanced. |
In the Linux kernel, the following vulnerability has been resolved:
xfrm: Reinject transport-mode packets through workqueue
The following warning is displayed when the tcp6-multi-diffip11 stress
test case of the LTP test suite is tested:
watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [ns-tcpserver:48198]
CPU: 0 PID: 48198 Comm: ns-tcpserver Kdump: loaded Not tainted 6.0.0-rc6+ #39
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : des3_ede_encrypt+0x27c/0x460 [libdes]
lr : 0x3f
sp : ffff80000ceaa1b0
x29: ffff80000ceaa1b0 x28: ffff0000df056100 x27: ffff0000e51e5280
x26: ffff80004df75030 x25: ffff0000e51e4600 x24: 000000000000003b
x23: 0000000000802080 x22: 000000000000003d x21: 0000000000000038
x20: 0000000080000020 x19: 000000000000000a x18: 0000000000000033
x17: ffff0000e51e4780 x16: ffff80004e2d1448 x15: ffff80004e2d1248
x14: ffff0000e51e4680 x13: ffff80004e2d1348 x12: ffff80004e2d1548
x11: ffff80004e2d1848 x10: ffff80004e2d1648 x9 : ffff80004e2d1748
x8 : ffff80004e2d1948 x7 : 000000000bcaf83d x6 : 000000000000001b
x5 : ffff80004e2d1048 x4 : 00000000761bf3bf x3 : 000000007f1dd0a3
x2 : ffff0000e51e4780 x1 : ffff0000e3b9a2f8 x0 : 00000000db44e872
Call trace:
des3_ede_encrypt+0x27c/0x460 [libdes]
crypto_des3_ede_encrypt+0x1c/0x30 [des_generic]
crypto_cbc_encrypt+0x148/0x190
crypto_skcipher_encrypt+0x2c/0x40
crypto_authenc_encrypt+0xc8/0xfc [authenc]
crypto_aead_encrypt+0x2c/0x40
echainiv_encrypt+0x144/0x1a0 [echainiv]
crypto_aead_encrypt+0x2c/0x40
esp6_output_tail+0x1c8/0x5d0 [esp6]
esp6_output+0x120/0x278 [esp6]
xfrm_output_one+0x458/0x4ec
xfrm_output_resume+0x6c/0x1f0
xfrm_output+0xac/0x4ac
__xfrm6_output+0x130/0x270
xfrm6_output+0x60/0xec
ip6_xmit+0x2ec/0x5bc
inet6_csk_xmit+0xbc/0x10c
__tcp_transmit_skb+0x460/0x8c0
tcp_write_xmit+0x348/0x890
__tcp_push_pending_frames+0x44/0x110
tcp_rcv_established+0x3c8/0x720
tcp_v6_do_rcv+0xdc/0x4a0
tcp_v6_rcv+0xc24/0xcb0
ip6_protocol_deliver_rcu+0xf0/0x574
ip6_input_finish+0x48/0x7c
ip6_input+0x48/0xc0
ip6_rcv_finish+0x80/0x9c
xfrm_trans_reinject+0xb0/0xf4
tasklet_action_common.constprop.0+0xf8/0x134
tasklet_action+0x30/0x3c
__do_softirq+0x128/0x368
do_softirq+0xb4/0xc0
__local_bh_enable_ip+0xb0/0xb4
put_cpu_fpsimd_context+0x40/0x70
kernel_neon_end+0x20/0x40
sha1_base_do_update.constprop.0.isra.0+0x11c/0x140 [sha1_ce]
sha1_ce_finup+0x94/0x110 [sha1_ce]
crypto_shash_finup+0x34/0xc0
hmac_finup+0x48/0xe0
crypto_shash_finup+0x34/0xc0
shash_digest_unaligned+0x74/0x90
crypto_shash_digest+0x4c/0x9c
shash_ahash_digest+0xc8/0xf0
shash_async_digest+0x28/0x34
crypto_ahash_digest+0x48/0xcc
crypto_authenc_genicv+0x88/0xcc [authenc]
crypto_authenc_encrypt+0xd8/0xfc [authenc]
crypto_aead_encrypt+0x2c/0x40
echainiv_encrypt+0x144/0x1a0 [echainiv]
crypto_aead_encrypt+0x2c/0x40
esp6_output_tail+0x1c8/0x5d0 [esp6]
esp6_output+0x120/0x278 [esp6]
xfrm_output_one+0x458/0x4ec
xfrm_output_resume+0x6c/0x1f0
xfrm_output+0xac/0x4ac
__xfrm6_output+0x130/0x270
xfrm6_output+0x60/0xec
ip6_xmit+0x2ec/0x5bc
inet6_csk_xmit+0xbc/0x10c
__tcp_transmit_skb+0x460/0x8c0
tcp_write_xmit+0x348/0x890
__tcp_push_pending_frames+0x44/0x110
tcp_push+0xb4/0x14c
tcp_sendmsg_locked+0x71c/0xb64
tcp_sendmsg+0x40/0x6c
inet6_sendmsg+0x4c/0x80
sock_sendmsg+0x5c/0x6c
__sys_sendto+0x128/0x15c
__arm64_sys_sendto+0x30/0x40
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0x170/0x194
do_el0_svc+0x38/0x4c
el0_svc+0x28/0xe0
el0t_64_sync_handler+0xbc/0x13c
el0t_64_sync+0x180/0x184
Get softirq info by bcc tool:
./softirqs -NT 10
Tracing soft irq event time... Hit Ctrl-C to end.
15:34:34
SOFTIRQ TOTAL_nsecs
block 158990
timer 20030920
sched 46577080
net_rx 676746820
tasklet 9906067650
15:34:45
SOFTIRQ TOTAL_nsecs
block 86100
sched 38849790
net_rx
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
ARC: mm: fix leakage of memory allocated for PTE
Since commit d9820ff ("ARC: mm: switch pgtable_t back to struct page *")
a memory leakage problem occurs. Memory allocated for page table entries
not released during process termination. This issue can be reproduced by
a small program that allocates a large amount of memory. After several
runs, you'll see that the amount of free memory has reduced and will
continue to reduce after each run. All ARC CPUs are effected by this
issue. The issue was introduced since the kernel stable release v5.15-rc1.
As described in commit d9820ff after switch pgtable_t back to struct
page *, a pointer to "struct page" and appropriate functions are used to
allocate and free a memory page for PTEs, but the pmd_pgtable macro hasn't
changed and returns the direct virtual address from the PMD (PGD) entry.
Than this address used as a parameter in the __pte_free() and as a result
this function couldn't release memory page allocated for PTEs.
Fix this issue by changing the pmd_pgtable macro and returning pointer to
struct page. |