| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: fix dma_free_coherent() pointer
dma_alloc_coherent() allocates a DMA mapped buffer and stores the
addresses in XXX_unaligned fields. Those should be reused when freeing
the buffer rather than the aligned addresses. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/bridge: synopsys: dw-dp: fix error paths of dw_dp_bind
Fix several issues in dw_dp_bind() error handling:
1. Missing return after drm_bridge_attach() failure - the function
continued execution instead of returning an error.
2. Resource leak: drm_dp_aux_register() is not a devm function, so
drm_dp_aux_unregister() must be called on all error paths after
aux registration succeeds. This affects errors from:
- drm_bridge_attach()
- phy_init()
- devm_add_action_or_reset()
- platform_get_irq()
- devm_request_threaded_irq()
3. Bug fix: platform_get_irq() returns the IRQ number or a negative
error code, but the error path was returning ERR_PTR(ret) instead
of ERR_PTR(dp->irq).
Use a goto label for cleanup to ensure consistent error handling. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/sva: invalidate stale IOTLB entries for kernel address space
Introduce a new IOMMU interface to flush IOTLB paging cache entries for
the CPU kernel address space. This interface is invoked from the x86
architecture code that manages combined user and kernel page tables,
specifically before any kernel page table page is freed and reused.
This addresses the main issue with vfree() which is a common occurrence
and can be triggered by unprivileged users. While this resolves the
primary problem, it doesn't address some extremely rare case related to
memory unplug of memory that was present as reserved memory at boot, which
cannot be triggered by unprivileged users. The discussion can be found at
the link below.
Enable SVA on x86 architecture since the IOMMU can now receive
notification to flush the paging cache before freeing the CPU kernel page
table pages. |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix early read unlock of page with EOF in middle
The read result collection for buffered reads seems to run ahead of the
completion of subrequests under some circumstances, as can be seen in the
following log snippet:
9p_client_res: client 18446612686390831168 response P9_TREAD tag 0 err 0
...
netfs_sreq: R=00001b55[1] DOWN TERM f=192 s=0 5fb2/5fb2 s=5 e=0
...
netfs_collect_folio: R=00001b55 ix=00004 r=4000-5000 t=4000/5fb2
netfs_folio: i=157f3 ix=00004-00004 read-done
netfs_folio: i=157f3 ix=00004-00004 read-unlock
netfs_collect_folio: R=00001b55 ix=00005 r=5000-5fb2 t=5000/5fb2
netfs_folio: i=157f3 ix=00005-00005 read-done
netfs_folio: i=157f3 ix=00005-00005 read-unlock
...
netfs_collect_stream: R=00001b55[0:] cto=5fb2 frn=ffffffff
netfs_collect_state: R=00001b55 col=5fb2 cln=6000 n=c
netfs_collect_stream: R=00001b55[0:] cto=5fb2 frn=ffffffff
netfs_collect_state: R=00001b55 col=5fb2 cln=6000 n=8
...
netfs_sreq: R=00001b55[2] ZERO SUBMT f=000 s=5fb2 0/4e s=0 e=0
netfs_sreq: R=00001b55[2] ZERO TERM f=102 s=5fb2 4e/4e s=5 e=0
The 'cto=5fb2' indicates the collected file pos we've collected results to
so far - but we still have 0x4e more bytes to go - so we shouldn't have
collected folio ix=00005 yet. The 'ZERO' subreq that clears the tail
happens after we unlock the folio, allowing the application to see the
uncleared tail through mmap.
The problem is that netfs_read_unlock_folios() will unlock a folio in which
the amount of read results collected hits EOF position - but the ZERO
subreq lies beyond that and so happens after.
Fix this by changing the end check to always be the end of the folio and
never the end of the file.
In the future, I should look at clearing to the end of the folio here rather
than adding a ZERO subreq to do this. On the other hand, the ZERO subreq can
run in parallel with an async READ subreq. Further, the ZERO subreq may still
be necessary to, say, handle extents in a ceph file that don't have any
backing store and are thus implicitly all zeros.
This can be reproduced by creating a file, the size of which doesn't align
to a page boundary, e.g. 24998 (0x5fb2) bytes and then doing something
like:
xfs_io -c "mmap -r 0 0x6000" -c "madvise -d 0 0x6000" \
-c "mread -v 0 0x6000" /xfstest.test/x
The last 0x4e bytes should all be 00, but if the tail hasn't been cleared
yet, you may see rubbish there. This can be reproduced with kafs by
modifying the kernel to disable the call to netfs_read_subreq_progress()
and to stop afs_issue_read() from doing the async call for NETFS_READAHEAD.
Reproduction can be made easier by inserting an mdelay(100) in
netfs_issue_read() for the ZERO-subreq case.
AFS and CIFS are normally unlikely to show this as they dispatch READ ops
asynchronously, which allows the ZERO-subreq to finish first. 9P's READ op is
completely synchronous, so the ZERO-subreq will always happen after. It isn't
seen all the time, though, because the collection may be done in a worker
thread. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: hp-bioscfg: Fix kobject warnings for empty attribute names
The hp-bioscfg driver attempts to register kobjects with empty names when
the HP BIOS returns attributes with empty name strings. This causes
multiple kernel warnings:
kobject: (00000000135fb5e6): attempted to be registered with empty name!
WARNING: CPU: 14 PID: 3336 at lib/kobject.c:219 kobject_add_internal+0x2eb/0x310
Add validation in hp_init_bios_buffer_attribute() to check if the
attribute name is empty after parsing it from the WMI buffer. If empty,
log a debug message and skip registration of that attribute, allowing the
module to continue processing other valid attributes. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix dead lock while flushing management frames
Commit [1] converted the management transmission work item into a
wiphy work. Since a wiphy work can only run under wiphy lock
protection, a race condition happens in below scenario:
1. a management frame is queued for transmission.
2. ath12k_mac_op_flush() gets called to flush pending frames associated
with the hardware (i.e, vif being NULL). Then in ath12k_mac_flush()
the process waits for the transmission done.
3. Since wiphy lock has been taken by the flush process, the transmission
work item has no chance to run, hence the dead lock.
>From user view, this dead lock results in below issue:
wlp8s0: authenticate with xxxxxx (local address=xxxxxx)
wlp8s0: send auth to xxxxxx (try 1/3)
wlp8s0: authenticate with xxxxxx (local address=xxxxxx)
wlp8s0: send auth to xxxxxx (try 1/3)
wlp8s0: authenticated
wlp8s0: associate with xxxxxx (try 1/3)
wlp8s0: aborting association with xxxxxx by local choice (Reason: 3=DEAUTH_LEAVING)
ath12k_pci 0000:08:00.0: failed to flush mgmt transmit queue, mgmt pkts pending 1
The dead lock can be avoided by invoking wiphy_work_flush() to proactively
run the queued work item. Note actually it is already present in
ath12k_mac_op_flush(), however it does not protect the case where vif
being NULL. Hence move it ahead to cover this case as well.
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.1.c5-00302-QCAHMTSWPL_V1.0_V2.0_SILICONZ-1.115823.3 |
| In the Linux kernel, the following vulnerability has been resolved:
dpll: Prevent duplicate registrations
Modify the internal registration helpers dpll_xa_ref_{dpll,pin}_add()
to reject duplicate registration attempts.
Previously, if a caller attempted to register the same pin multiple
times (with the same ops, priv, and cookie) on the same device, the core
silently increments the reference count and return success. This behavior
is incorrect because if the caller makes these duplicate registrations
then for the first one dpll_pin_registration is allocated and for others
the associated dpll_pin_ref.refcount is incremented. During the first
unregistration the associated dpll_pin_registration is freed and for
others WARN is fired.
Fix this by updating the logic to return `-EEXIST` if a matching
registration is found to enforce a strict "register once" policy. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: Set __nocfi on swsusp_arch_resume()
A DABT is reported[1] on an android based system when resume from hiberate.
This happens because swsusp_arch_suspend_exit() is marked with SYM_CODE_*()
and does not have a CFI hash, but swsusp_arch_resume() will attempt to
verify the CFI hash when calling a copy of swsusp_arch_suspend_exit().
Given that there's an existing requirement that the entrypoint to
swsusp_arch_suspend_exit() is the first byte of the .hibernate_exit.text
section, we cannot fix this by marking swsusp_arch_suspend_exit() with
SYM_FUNC_*(). The simplest fix for now is to disable the CFI check in
swsusp_arch_resume().
Mark swsusp_arch_resume() as __nocfi to disable the CFI check.
[1]
[ 22.991934][ T1] Unable to handle kernel paging request at virtual address 0000000109170ffc
[ 22.991934][ T1] Mem abort info:
[ 22.991934][ T1] ESR = 0x0000000096000007
[ 22.991934][ T1] EC = 0x25: DABT (current EL), IL = 32 bits
[ 22.991934][ T1] SET = 0, FnV = 0
[ 22.991934][ T1] EA = 0, S1PTW = 0
[ 22.991934][ T1] FSC = 0x07: level 3 translation fault
[ 22.991934][ T1] Data abort info:
[ 22.991934][ T1] ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000
[ 22.991934][ T1] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 22.991934][ T1] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 22.991934][ T1] [0000000109170ffc] user address but active_mm is swapper
[ 22.991934][ T1] Internal error: Oops: 0000000096000007 [#1] PREEMPT SMP
[ 22.991934][ T1] Dumping ftrace buffer:
[ 22.991934][ T1] (ftrace buffer empty)
[ 22.991934][ T1] Modules linked in:
[ 22.991934][ T1] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.6.98-android15-8-g0b1d2aee7fc3-dirty-4k #1 688c7060a825a3ac418fe53881730b355915a419
[ 22.991934][ T1] Hardware name: Unisoc UMS9360-base Board (DT)
[ 22.991934][ T1] pstate: 804000c5 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 22.991934][ T1] pc : swsusp_arch_resume+0x2ac/0x344
[ 22.991934][ T1] lr : swsusp_arch_resume+0x294/0x344
[ 22.991934][ T1] sp : ffffffc08006b960
[ 22.991934][ T1] x29: ffffffc08006b9c0 x28: 0000000000000000 x27: 0000000000000000
[ 22.991934][ T1] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000820
[ 22.991934][ T1] x23: ffffffd0817e3000 x22: ffffffd0817e3000 x21: 0000000000000000
[ 22.991934][ T1] x20: ffffff8089171000 x19: ffffffd08252c8c8 x18: ffffffc080061058
[ 22.991934][ T1] x17: 00000000529c6ef0 x16: 00000000529c6ef0 x15: 0000000000000004
[ 22.991934][ T1] x14: ffffff8178c88000 x13: 0000000000000006 x12: 0000000000000000
[ 22.991934][ T1] x11: 0000000000000015 x10: 0000000000000001 x9 : ffffffd082533000
[ 22.991934][ T1] x8 : 0000000109171000 x7 : 205b5d3433393139 x6 : 392e32322020205b
[ 22.991934][ T1] x5 : 000000010916f000 x4 : 000000008164b000 x3 : ffffff808a4e0530
[ 22.991934][ T1] x2 : ffffffd08058e784 x1 : 0000000082326000 x0 : 000000010a283000
[ 22.991934][ T1] Call trace:
[ 22.991934][ T1] swsusp_arch_resume+0x2ac/0x344
[ 22.991934][ T1] hibernation_restore+0x158/0x18c
[ 22.991934][ T1] load_image_and_restore+0xb0/0xec
[ 22.991934][ T1] software_resume+0xf4/0x19c
[ 22.991934][ T1] software_resume_initcall+0x34/0x78
[ 22.991934][ T1] do_one_initcall+0xe8/0x370
[ 22.991934][ T1] do_initcall_level+0xc8/0x19c
[ 22.991934][ T1] do_initcalls+0x70/0xc0
[ 22.991934][ T1] do_basic_setup+0x1c/0x28
[ 22.991934][ T1] kernel_init_freeable+0xe0/0x148
[ 22.991934][ T1] kernel_init+0x20/0x1a8
[ 22.991934][ T1] ret_from_fork+0x10/0x20
[ 22.991934][ T1] Code: a9400a61 f94013e0 f9438923 f9400a64 (b85fc110)
[catalin.marinas@arm.com: commit log updated by Mark Rutland] |
| In the Linux kernel, the following vulnerability has been resolved:
perf: Fix refcount warning on event->mmap_count increment
When calling refcount_inc(&event->mmap_count) inside perf_mmap_rb(), the
following warning is triggered:
refcount_t: addition on 0; use-after-free.
WARNING: lib/refcount.c:25
PoC:
struct perf_event_attr attr = {0};
int fd = syscall(__NR_perf_event_open, &attr, 0, -1, -1, 0);
mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
int victim = syscall(__NR_perf_event_open, &attr, 0, -1, fd,
PERF_FLAG_FD_OUTPUT);
mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, victim, 0);
This occurs when creating a group member event with the flag
PERF_FLAG_FD_OUTPUT. The group leader should be mmap-ed and then mmap-ing
the event triggers the warning.
Since the event has copied the output_event in perf_event_set_output(),
event->rb is set. As a result, perf_mmap_rb() calls
refcount_inc(&event->mmap_count) when event->mmap_count = 0.
Disallow the case when event->mmap_count = 0. This also prevents two
events from updating the same user_page. |
| In the Linux kernel, the following vulnerability has been resolved:
netdevsim: fix a race issue related to the operation on bpf_bound_progs list
The netdevsim driver lacks a protection mechanism for operations on the
bpf_bound_progs list. When the nsim_bpf_create_prog() performs
list_add_tail, it is possible that nsim_bpf_destroy_prog() is
simultaneously performs list_del. Concurrent operations on the list may
lead to list corruption and trigger a kernel crash as follows:
[ 417.290971] kernel BUG at lib/list_debug.c:62!
[ 417.290983] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 417.290992] CPU: 10 PID: 168 Comm: kworker/10:1 Kdump: loaded Not tainted 6.19.0-rc5 #1
[ 417.291003] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 417.291007] Workqueue: events bpf_prog_free_deferred
[ 417.291021] RIP: 0010:__list_del_entry_valid_or_report+0xa7/0xc0
[ 417.291034] Code: a8 ff 0f 0b 48 89 fe 48 89 ca 48 c7 c7 48 a1 eb ae e8 ed fb a8 ff 0f 0b 48 89 fe 48 89 c2 48 c7 c7 80 a1 eb ae e8 d9 fb a8 ff <0f> 0b 48 89 d1 48 c7 c7 d0 a1 eb ae 48 89 f2 48 89 c6 e8 c2 fb a8
[ 417.291040] RSP: 0018:ffffb16a40807df8 EFLAGS: 00010246
[ 417.291046] RAX: 000000000000006d RBX: ffff8e589866f500 RCX: 0000000000000000
[ 417.291051] RDX: 0000000000000000 RSI: ffff8e59f7b23180 RDI: ffff8e59f7b23180
[ 417.291055] RBP: ffffb16a412c9000 R08: 0000000000000000 R09: 0000000000000003
[ 417.291059] R10: ffffb16a40807c80 R11: ffffffffaf9edce8 R12: ffff8e594427ac20
[ 417.291063] R13: ffff8e59f7b44780 R14: ffff8e58800b7a05 R15: 0000000000000000
[ 417.291074] FS: 0000000000000000(0000) GS:ffff8e59f7b00000(0000) knlGS:0000000000000000
[ 417.291079] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 417.291083] CR2: 00007fc4083efe08 CR3: 00000001c3626006 CR4: 0000000000770ee0
[ 417.291088] PKRU: 55555554
[ 417.291091] Call Trace:
[ 417.291096] <TASK>
[ 417.291103] nsim_bpf_destroy_prog+0x31/0x80 [netdevsim]
[ 417.291154] __bpf_prog_offload_destroy+0x2a/0x80
[ 417.291163] bpf_prog_dev_bound_destroy+0x6f/0xb0
[ 417.291171] bpf_prog_free_deferred+0x18e/0x1a0
[ 417.291178] process_one_work+0x18a/0x3a0
[ 417.291188] worker_thread+0x27b/0x3a0
[ 417.291197] ? __pfx_worker_thread+0x10/0x10
[ 417.291207] kthread+0xe5/0x120
[ 417.291214] ? __pfx_kthread+0x10/0x10
[ 417.291221] ret_from_fork+0x31/0x50
[ 417.291230] ? __pfx_kthread+0x10/0x10
[ 417.291236] ret_from_fork_asm+0x1a/0x30
[ 417.291246] </TASK>
Add a mutex lock, to prevent simultaneous addition and deletion operations
on the list. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: move SCTP_CMD_ASSOC_SHKEY right after SCTP_CMD_PEER_INIT
A null-ptr-deref was reported in the SCTP transmit path when SCTP-AUTH key
initialization fails:
==================================================================
KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f]
CPU: 0 PID: 16 Comm: ksoftirqd/0 Tainted: G W 6.6.0 #2
RIP: 0010:sctp_packet_bundle_auth net/sctp/output.c:264 [inline]
RIP: 0010:sctp_packet_append_chunk+0xb36/0x1260 net/sctp/output.c:401
Call Trace:
sctp_packet_transmit_chunk+0x31/0x250 net/sctp/output.c:189
sctp_outq_flush_data+0xa29/0x26d0 net/sctp/outqueue.c:1111
sctp_outq_flush+0xc80/0x1240 net/sctp/outqueue.c:1217
sctp_cmd_interpreter.isra.0+0x19a5/0x62c0 net/sctp/sm_sideeffect.c:1787
sctp_side_effects net/sctp/sm_sideeffect.c:1198 [inline]
sctp_do_sm+0x1a3/0x670 net/sctp/sm_sideeffect.c:1169
sctp_assoc_bh_rcv+0x33e/0x640 net/sctp/associola.c:1052
sctp_inq_push+0x1dd/0x280 net/sctp/inqueue.c:88
sctp_rcv+0x11ae/0x3100 net/sctp/input.c:243
sctp6_rcv+0x3d/0x60 net/sctp/ipv6.c:1127
The issue is triggered when sctp_auth_asoc_init_active_key() fails in
sctp_sf_do_5_1C_ack() while processing an INIT_ACK. In this case, the
command sequence is currently:
- SCTP_CMD_PEER_INIT
- SCTP_CMD_TIMER_STOP (T1_INIT)
- SCTP_CMD_TIMER_START (T1_COOKIE)
- SCTP_CMD_NEW_STATE (COOKIE_ECHOED)
- SCTP_CMD_ASSOC_SHKEY
- SCTP_CMD_GEN_COOKIE_ECHO
If SCTP_CMD_ASSOC_SHKEY fails, asoc->shkey remains NULL, while
asoc->peer.auth_capable and asoc->peer.peer_chunks have already been set by
SCTP_CMD_PEER_INIT. This allows a DATA chunk with auth = 1 and shkey = NULL
to be queued by sctp_datamsg_from_user().
Since command interpretation stops on failure, no COOKIE_ECHO should been
sent via SCTP_CMD_GEN_COOKIE_ECHO. However, the T1_COOKIE timer has already
been started, and it may enqueue a COOKIE_ECHO into the outqueue later. As
a result, the DATA chunk can be transmitted together with the COOKIE_ECHO
in sctp_outq_flush_data(), leading to the observed issue.
Similar to the other places where it calls sctp_auth_asoc_init_active_key()
right after sctp_process_init(), this patch moves the SCTP_CMD_ASSOC_SHKEY
immediately after SCTP_CMD_PEER_INIT, before stopping T1_INIT and starting
T1_COOKIE. This ensures that if shared key generation fails, authenticated
DATA cannot be sent. It also allows the T1_INIT timer to retransmit INIT,
giving the client another chance to process INIT_ACK and retry key setup. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: annotate data-race in ndisc_router_discovery()
syzbot found that ndisc_router_discovery() could read and write
in6_dev->ra_mtu without holding a lock [1]
This looks fine, IFLA_INET6_RA_MTU is best effort.
Add READ_ONCE()/WRITE_ONCE() to document the race.
Note that we might also reject illegal MTU values
(mtu < IPV6_MIN_MTU || mtu > skb->dev->mtu) in a future patch.
[1]
BUG: KCSAN: data-race in ndisc_router_discovery / ndisc_router_discovery
read to 0xffff888119809c20 of 4 bytes by task 25817 on cpu 1:
ndisc_router_discovery+0x151d/0x1c90 net/ipv6/ndisc.c:1558
ndisc_rcv+0x2ad/0x3d0 net/ipv6/ndisc.c:1841
icmpv6_rcv+0xe5a/0x12f0 net/ipv6/icmp.c:989
ip6_protocol_deliver_rcu+0xb2a/0x10d0 net/ipv6/ip6_input.c:438
ip6_input_finish+0xf0/0x1d0 net/ipv6/ip6_input.c:489
NF_HOOK include/linux/netfilter.h:318 [inline]
ip6_input+0x5e/0x140 net/ipv6/ip6_input.c:500
ip6_mc_input+0x27c/0x470 net/ipv6/ip6_input.c:590
dst_input include/net/dst.h:474 [inline]
ip6_rcv_finish+0x336/0x340 net/ipv6/ip6_input.c:79
...
write to 0xffff888119809c20 of 4 bytes by task 25816 on cpu 0:
ndisc_router_discovery+0x155a/0x1c90 net/ipv6/ndisc.c:1559
ndisc_rcv+0x2ad/0x3d0 net/ipv6/ndisc.c:1841
icmpv6_rcv+0xe5a/0x12f0 net/ipv6/icmp.c:989
ip6_protocol_deliver_rcu+0xb2a/0x10d0 net/ipv6/ip6_input.c:438
ip6_input_finish+0xf0/0x1d0 net/ipv6/ip6_input.c:489
NF_HOOK include/linux/netfilter.h:318 [inline]
ip6_input+0x5e/0x140 net/ipv6/ip6_input.c:500
ip6_mc_input+0x27c/0x470 net/ipv6/ip6_input.c:590
dst_input include/net/dst.h:474 [inline]
ip6_rcv_finish+0x336/0x340 net/ipv6/ip6_input.c:79
...
value changed: 0x00000000 -> 0xe5400659 |
| In the Linux kernel, the following vulnerability has been resolved:
interconnect: debugfs: initialize src_node and dst_node to empty strings
The debugfs_create_str() API assumes that the string pointer is either NULL
or points to valid kmalloc() memory. Leaving the pointer uninitialized can
cause problems.
Initialize src_node and dst_node to empty strings before creating the
debugfs entries to guarantee that reads and writes are safe. |
| In the Linux kernel, the following vulnerability has been resolved:
igc: Reduce TSN TX packet buffer from 7KB to 5KB per queue
The previous 7 KB per queue caused TX unit hangs under heavy
timestamping load. Reducing to 5 KB avoids these hangs and matches
the TSN recommendation in I225/I226 SW User Manual Section 7.5.4.
The 8 KB "freed" by this change is currently unused. This reduction
is not expected to impact throughput, as the i226 is PCIe-limited
for small TSN packets rather than TX-buffer-limited. |
| In the Linux kernel, the following vulnerability has been resolved:
mISDN: annotate data-race around dev->work
dev->work can re read locklessly in mISDN_read()
and mISDN_poll(). Add READ_ONCE()/WRITE_ONCE() annotations.
BUG: KCSAN: data-race in mISDN_ioctl / mISDN_read
write to 0xffff88812d848280 of 4 bytes by task 10864 on cpu 1:
misdn_add_timer drivers/isdn/mISDN/timerdev.c:175 [inline]
mISDN_ioctl+0x2fb/0x550 drivers/isdn/mISDN/timerdev.c:233
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl+0xce/0x140 fs/ioctl.c:583
__x64_sys_ioctl+0x43/0x50 fs/ioctl.c:583
x64_sys_call+0x14b0/0x3000 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
read to 0xffff88812d848280 of 4 bytes by task 10857 on cpu 0:
mISDN_read+0x1f2/0x470 drivers/isdn/mISDN/timerdev.c:112
do_loop_readv_writev fs/read_write.c:847 [inline]
vfs_readv+0x3fb/0x690 fs/read_write.c:1020
do_readv+0xe7/0x210 fs/read_write.c:1080
__do_sys_readv fs/read_write.c:1165 [inline]
__se_sys_readv fs/read_write.c:1162 [inline]
__x64_sys_readv+0x45/0x50 fs/read_write.c:1162
x64_sys_call+0x2831/0x3000 arch/x86/include/generated/asm/syscalls_64.h:20
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
value changed: 0x00000000 -> 0x00000001 |
| In the Linux kernel, the following vulnerability has been resolved:
l2tp: avoid one data-race in l2tp_tunnel_del_work()
We should read sk->sk_socket only when dealing with kernel sockets.
syzbot reported the following data-race:
BUG: KCSAN: data-race in l2tp_tunnel_del_work / sk_common_release
write to 0xffff88811c182b20 of 8 bytes by task 5365 on cpu 0:
sk_set_socket include/net/sock.h:2092 [inline]
sock_orphan include/net/sock.h:2118 [inline]
sk_common_release+0xae/0x230 net/core/sock.c:4003
udp_lib_close+0x15/0x20 include/net/udp.h:325
inet_release+0xce/0xf0 net/ipv4/af_inet.c:437
__sock_release net/socket.c:662 [inline]
sock_close+0x6b/0x150 net/socket.c:1455
__fput+0x29b/0x650 fs/file_table.c:468
____fput+0x1c/0x30 fs/file_table.c:496
task_work_run+0x131/0x1a0 kernel/task_work.c:233
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
__exit_to_user_mode_loop kernel/entry/common.c:44 [inline]
exit_to_user_mode_loop+0x1fe/0x740 kernel/entry/common.c:75
__exit_to_user_mode_prepare include/linux/irq-entry-common.h:226 [inline]
syscall_exit_to_user_mode_prepare include/linux/irq-entry-common.h:256 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:159 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:194 [inline]
do_syscall_64+0x1e1/0x2b0 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f
read to 0xffff88811c182b20 of 8 bytes by task 827 on cpu 1:
l2tp_tunnel_del_work+0x2f/0x1a0 net/l2tp/l2tp_core.c:1418
process_one_work kernel/workqueue.c:3257 [inline]
process_scheduled_works+0x4ce/0x9d0 kernel/workqueue.c:3340
worker_thread+0x582/0x770 kernel/workqueue.c:3421
kthread+0x489/0x510 kernel/kthread.c:463
ret_from_fork+0x149/0x290 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
value changed: 0xffff88811b818000 -> 0x0000000000000000 |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: provide a net pointer to __skb_flow_dissect()
After 3cbf4ffba5ee ("net: plumb network namespace into __skb_flow_dissect")
we have to provide a net pointer to __skb_flow_dissect(),
either via skb->dev, skb->sk, or a user provided pointer.
In the following case, syzbot was able to cook a bare skb.
WARNING: net/core/flow_dissector.c:1131 at __skb_flow_dissect+0xb57/0x68b0 net/core/flow_dissector.c:1131, CPU#1: syz.2.1418/11053
Call Trace:
<TASK>
bond_flow_dissect drivers/net/bonding/bond_main.c:4093 [inline]
__bond_xmit_hash+0x2d7/0xba0 drivers/net/bonding/bond_main.c:4157
bond_xmit_hash_xdp drivers/net/bonding/bond_main.c:4208 [inline]
bond_xdp_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5139 [inline]
bond_xdp_get_xmit_slave+0x1fd/0x710 drivers/net/bonding/bond_main.c:5515
xdp_master_redirect+0x13f/0x2c0 net/core/filter.c:4388
bpf_prog_run_xdp include/net/xdp.h:700 [inline]
bpf_test_run+0x6b2/0x7d0 net/bpf/test_run.c:421
bpf_prog_test_run_xdp+0x795/0x10e0 net/bpf/test_run.c:1390
bpf_prog_test_run+0x2c7/0x340 kernel/bpf/syscall.c:4703
__sys_bpf+0x562/0x860 kernel/bpf/syscall.c:6182
__do_sys_bpf kernel/bpf/syscall.c:6274 [inline]
__se_sys_bpf kernel/bpf/syscall.c:6272 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:6272
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94 |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix data-race warning and potential load/store tearing
Fix the following:
BUG: KCSAN: data-race in rxrpc_peer_keepalive_worker / rxrpc_send_data_packet
which is reporting an issue with the reads and writes to ->last_tx_at in:
conn->peer->last_tx_at = ktime_get_seconds();
and:
keepalive_at = peer->last_tx_at + RXRPC_KEEPALIVE_TIME;
The lockless accesses to these to values aren't actually a problem as the
read only needs an approximate time of last transmission for the purposes
of deciding whether or not the transmission of a keepalive packet is
warranted yet.
Also, as ->last_tx_at is a 64-bit value, tearing can occur on a 32-bit
arch.
Fix both of these by switching to an unsigned int for ->last_tx_at and only
storing the LSW of the time64_t. It can then be reconstructed at need
provided no more than 68 years has elapsed since the last transmission. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: add missing ice_deinit_hw() in devlink reinit path
devlink-reload results in ice_init_hw failed error, and then removing
the ice driver causes a NULL pointer dereference.
[ +0.102213] ice 0000:ca:00.0: ice_init_hw failed: -16
...
[ +0.000001] Call Trace:
[ +0.000003] <TASK>
[ +0.000006] ice_unload+0x8f/0x100 [ice]
[ +0.000081] ice_remove+0xba/0x300 [ice]
Commit 1390b8b3d2be ("ice: remove duplicate call to ice_deinit_hw() on
error paths") removed ice_deinit_hw() from ice_deinit_dev(). As a result
ice_devlink_reinit_down() no longer calls ice_deinit_hw(), but
ice_devlink_reinit_up() still calls ice_init_hw(). Since the control
queues are not uninitialized, ice_init_hw() fails with -EBUSY.
Add ice_deinit_hw() to ice_devlink_reinit_down() to correspond with
ice_init_hw() in ice_devlink_reinit_up(). |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx8m-blk-ctrl: Remove separate rst and clk mask for 8mq vpu
For i.MX8MQ platform, the ADB in the VPUMIX domain has no separate reset
and clock enable bits, but is ungated and reset together with the VPUs.
So we can't reset G1 or G2 separately, it may led to the system hang.
Remove rst_mask and clk_mask of imx8mq_vpu_blk_ctl_domain_data.
Let imx8mq_vpu_power_notifier() do really vpu reset. |