| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver, causing kernel panic and a denial of service. |
| A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver and causing kernel panic and a denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: fix handling recovery & reissue in ublk_abort_queue()
Commit 8284066946e6 ("ublk: grab request reference when the request is handled
by userspace") doesn't grab request reference in case of recovery reissue.
Then the request can be requeued & re-dispatch & failed when canceling
uring command.
If it is one zc request, the request can be freed before io_uring
returns the zc buffer back, then cause kernel panic:
[ 126.773061] BUG: kernel NULL pointer dereference, address: 00000000000000c8
[ 126.773657] #PF: supervisor read access in kernel mode
[ 126.774052] #PF: error_code(0x0000) - not-present page
[ 126.774455] PGD 0 P4D 0
[ 126.774698] Oops: Oops: 0000 [#1] SMP NOPTI
[ 126.775034] CPU: 13 UID: 0 PID: 1612 Comm: kworker/u64:55 Not tainted 6.14.0_blk+ #182 PREEMPT(full)
[ 126.775676] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39 04/01/2014
[ 126.776275] Workqueue: iou_exit io_ring_exit_work
[ 126.776651] RIP: 0010:ublk_io_release+0x14/0x130 [ublk_drv]
Fixes it by always grabbing request reference for aborting the request. |
| In the Linux kernel, the following vulnerability has been resolved:
slab: ensure slab->obj_exts is clear in a newly allocated slab page
ktest recently reported crashes while running several buffered io tests
with __alloc_tagging_slab_alloc_hook() at the top of the crash call stack.
The signature indicates an invalid address dereference with low bits of
slab->obj_exts being set. The bits were outside of the range used by
page_memcg_data_flags and objext_flags and hence were not masked out
by slab_obj_exts() when obtaining the pointer stored in slab->obj_exts.
The typical crash log looks like this:
00510 Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
00510 Mem abort info:
00510 ESR = 0x0000000096000045
00510 EC = 0x25: DABT (current EL), IL = 32 bits
00510 SET = 0, FnV = 0
00510 EA = 0, S1PTW = 0
00510 FSC = 0x05: level 1 translation fault
00510 Data abort info:
00510 ISV = 0, ISS = 0x00000045, ISS2 = 0x00000000
00510 CM = 0, WnR = 1, TnD = 0, TagAccess = 0
00510 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
00510 user pgtable: 4k pages, 39-bit VAs, pgdp=0000000104175000
00510 [0000000000000010] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
00510 Internal error: Oops: 0000000096000045 [#1] SMP
00510 Modules linked in:
00510 CPU: 10 UID: 0 PID: 7692 Comm: cat Not tainted 6.15.0-rc1-ktest-g189e17946605 #19327 NONE
00510 Hardware name: linux,dummy-virt (DT)
00510 pstate: 20001005 (nzCv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--)
00510 pc : __alloc_tagging_slab_alloc_hook+0xe0/0x190
00510 lr : __kmalloc_noprof+0x150/0x310
00510 sp : ffffff80c87df6c0
00510 x29: ffffff80c87df6c0 x28: 000000000013d1ff x27: 000000000013d200
00510 x26: ffffff80c87df9e0 x25: 0000000000000000 x24: 0000000000000001
00510 x23: ffffffc08041953c x22: 000000000000004c x21: ffffff80c0002180
00510 x20: fffffffec3120840 x19: ffffff80c4821000 x18: 0000000000000000
00510 x17: fffffffec3d02f00 x16: fffffffec3d02e00 x15: fffffffec3d00700
00510 x14: fffffffec3d00600 x13: 0000000000000200 x12: 0000000000000006
00510 x11: ffffffc080bb86c0 x10: 0000000000000000 x9 : ffffffc080201e58
00510 x8 : ffffff80c4821060 x7 : 0000000000000000 x6 : 0000000055555556
00510 x5 : 0000000000000001 x4 : 0000000000000010 x3 : 0000000000000060
00510 x2 : 0000000000000000 x1 : ffffffc080f50cf8 x0 : ffffff80d801d000
00510 Call trace:
00510 __alloc_tagging_slab_alloc_hook+0xe0/0x190 (P)
00510 __kmalloc_noprof+0x150/0x310
00510 __bch2_folio_create+0x5c/0xf8
00510 bch2_folio_create+0x2c/0x40
00510 bch2_readahead+0xc0/0x460
00510 read_pages+0x7c/0x230
00510 page_cache_ra_order+0x244/0x3a8
00510 page_cache_async_ra+0x124/0x170
00510 filemap_readahead.isra.0+0x58/0xa0
00510 filemap_get_pages+0x454/0x7b0
00510 filemap_read+0xdc/0x418
00510 bch2_read_iter+0x100/0x1b0
00510 vfs_read+0x214/0x300
00510 ksys_read+0x6c/0x108
00510 __arm64_sys_read+0x20/0x30
00510 invoke_syscall.constprop.0+0x54/0xe8
00510 do_el0_svc+0x44/0xc8
00510 el0_svc+0x18/0x58
00510 el0t_64_sync_handler+0x104/0x130
00510 el0t_64_sync+0x154/0x158
00510 Code: d5384100 f9401c01 b9401aa3 b40002e1 (f8227881)
00510 ---[ end trace 0000000000000000 ]---
00510 Kernel panic - not syncing: Oops: Fatal exception
00510 SMP: stopping secondary CPUs
00510 Kernel Offset: disabled
00510 CPU features: 0x0000,000000e0,00000410,8240500b
00510 Memory Limit: none
Investigation indicates that these bits are already set when we allocate
slab page and are not zeroed out after allocation. We are not yet sure
why these crashes start happening only recently but regardless of the
reason, not initializing a field that gets used later is wrong. Fix it
by initializing slab->obj_exts during slab page allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
net: libwx: handle page_pool_dev_alloc_pages error
page_pool_dev_alloc_pages could return NULL. There was a WARN_ON(!page)
but it would still proceed to use the NULL pointer and then crash.
This is similar to commit 001ba0902046
("net: fec: handle page_pool_dev_alloc_pages error").
This is found by our static analysis tool KNighter. |
| A flaw was found in libsoup, where the soup_message_headers_get_content_disposition() function is vulnerable to a NULL pointer dereference. This flaw allows a malicious HTTP peer to crash a libsoup client or server that uses this function. |
| A null pointer dereference flaw was found in the Linux kernel API for the cryptographic algorithm scatterwalk functionality. This issue occurs when a user constructs a malicious packet with specific socket configuration, which could allow a local user to crash the system or escalate their privileges on the system. |
| A null pointer dereference flaw was found in the hugetlbfs_fill_super function in the Linux kernel hugetlbfs (HugeTLB pages) functionality. This issue may allow a local user to crash the system or potentially escalate their privileges on the system. |
| A NULL pointer dereference flaw was found in the Linux kernel ipv4 stack. The socket buffer (skb) was assumed to be associated with a device before calling __ip_options_compile, which is not always the case if the skb is re-routed by ipvs. This issue may allow a local user with CAP_NET_ADMIN privileges to crash the system. |
| A Null pointer dereference problem was found in ida_free in lib/idr.c in the Linux Kernel. This issue may allow an attacker using this library to cause a denial of service problem due to a missing check at a function return. |
| A null pointer dereference vulnerability was found in nft_dynset_init() in net/netfilter/nft_dynset.c in nf_tables in the Linux kernel. This issue may allow a local attacker with CAP_NET_ADMIN user privilege to trigger a denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: kprobe: Fix potential null-ptr-deref on trace_array in kprobe_event_gen_test_exit()
When test_gen_kprobe_cmd() failed after kprobe_event_gen_cmd_end(), it
will goto delete, which will call kprobe_event_delete() and release the
corresponding resource. However, the trace_array in gen_kretprobe_test
will point to the invalid resource. Set gen_kretprobe_test to NULL
after called kprobe_event_delete() to prevent null-ptr-deref.
BUG: kernel NULL pointer dereference, address: 0000000000000070
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
CPU: 0 PID: 246 Comm: modprobe Tainted: G W
6.1.0-rc1-00174-g9522dc5c87da-dirty #248
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:__ftrace_set_clr_event_nolock+0x53/0x1b0
Code: e8 82 26 fc ff 49 8b 1e c7 44 24 0c ea ff ff ff 49 39 de 0f 84 3c
01 00 00 c7 44 24 18 00 00 00 00 e8 61 26 fc ff 48 8b 6b 10 <44> 8b 65
70 4c 8b 6d 18 41 f7 c4 00 02 00 00 75 2f
RSP: 0018:ffffc9000159fe00 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff88810971d268 RCX: 0000000000000000
RDX: ffff8881080be600 RSI: ffffffff811b48ff RDI: ffff88810971d058
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000001
R10: ffffc9000159fe58 R11: 0000000000000001 R12: ffffffffa0001064
R13: ffffffffa000106c R14: ffff88810971d238 R15: 0000000000000000
FS: 00007f89eeff6540(0000) GS:ffff88813b600000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000070 CR3: 000000010599e004 CR4: 0000000000330ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__ftrace_set_clr_event+0x3e/0x60
trace_array_set_clr_event+0x35/0x50
? 0xffffffffa0000000
kprobe_event_gen_test_exit+0xcd/0x10b [kprobe_event_gen_test]
__x64_sys_delete_module+0x206/0x380
? lockdep_hardirqs_on_prepare+0xd8/0x190
? syscall_enter_from_user_mode+0x1c/0x50
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f89eeb061b7 |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: kprobe: Fix potential null-ptr-deref on trace_event_file in kprobe_event_gen_test_exit()
When trace_get_event_file() failed, gen_kretprobe_test will be assigned
as the error code. If module kprobe_event_gen_test is removed now, the
null pointer dereference will happen in kprobe_event_gen_test_exit().
Check if gen_kprobe_test or gen_kretprobe_test is error code or NULL
before dereference them.
BUG: kernel NULL pointer dereference, address: 0000000000000012
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
CPU: 3 PID: 2210 Comm: modprobe Not tainted
6.1.0-rc1-00171-g2159299a3b74-dirty #217
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:kprobe_event_gen_test_exit+0x1c/0xb5 [kprobe_event_gen_test]
Code: Unable to access opcode bytes at 0xffffffff9ffffff2.
RSP: 0018:ffffc900015bfeb8 EFLAGS: 00010246
RAX: ffffffffffffffea RBX: ffffffffa0002080 RCX: 0000000000000000
RDX: ffffffffa0001054 RSI: ffffffffa0001064 RDI: ffffffffdfc6349c
RBP: ffffffffa0000000 R08: 0000000000000004 R09: 00000000001e95c0
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000800
R13: ffffffffa0002420 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f56b75be540(0000) GS:ffff88813bc00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffff9ffffff2 CR3: 000000010874a006 CR4: 0000000000330ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__x64_sys_delete_module+0x206/0x380
? lockdep_hardirqs_on_prepare+0xd8/0x190
? syscall_enter_from_user_mode+0x1c/0x50
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Fix error pointers in dpu_plane_virtual_atomic_check
The function dpu_plane_virtual_atomic_check was dereferencing pointers
returned by drm_atomic_get_plane_state without checking for errors. This
could lead to undefined behavior if the function returns an error pointer.
This commit adds checks using IS_ERR to ensure that plane_state is
valid before dereferencing them.
Similar to commit da29abe71e16
("drm/amd/display: Fix error pointers in amdgpu_dm_crtc_mem_type_changed").
Patchwork: https://patchwork.freedesktop.org/patch/643132/ |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: cros-ec-tunnel: defer probe if parent EC is not present
When i2c-cros-ec-tunnel and the EC driver are built-in, the EC parent
device will not be found, leading to NULL pointer dereference.
That can also be reproduced by unbinding the controller driver and then
loading i2c-cros-ec-tunnel module (or binding the device).
[ 271.991245] BUG: kernel NULL pointer dereference, address: 0000000000000058
[ 271.998215] #PF: supervisor read access in kernel mode
[ 272.003351] #PF: error_code(0x0000) - not-present page
[ 272.008485] PGD 0 P4D 0
[ 272.011022] Oops: Oops: 0000 [#1] SMP NOPTI
[ 272.015207] CPU: 0 UID: 0 PID: 3859 Comm: insmod Tainted: G S 6.15.0-rc1-00004-g44722359ed83 #30 PREEMPT(full) 3c7fb39a552e7d949de2ad921a7d6588d3a4fdc5
[ 272.030312] Tainted: [S]=CPU_OUT_OF_SPEC
[ 272.034233] Hardware name: HP Berknip/Berknip, BIOS Google_Berknip.13434.356.0 05/17/2021
[ 272.042400] RIP: 0010:ec_i2c_probe+0x2b/0x1c0 [i2c_cros_ec_tunnel]
[ 272.048577] Code: 1f 44 00 00 41 57 41 56 41 55 41 54 53 48 83 ec 10 65 48 8b 05 06 a0 6c e7 48 89 44 24 08 4c 8d 7f 10 48 8b 47 50 4c 8b 60 78 <49> 83 7c 24 58 00 0f 84 2f 01 00 00 48 89 fb be 30 06 00 00 4c 9
[ 272.067317] RSP: 0018:ffffa32082a03940 EFLAGS: 00010282
[ 272.072541] RAX: ffff969580b6a810 RBX: ffff969580b68c10 RCX: 0000000000000000
[ 272.079672] RDX: 0000000000000000 RSI: 0000000000000282 RDI: ffff969580b68c00
[ 272.086804] RBP: 00000000fffffdfb R08: 0000000000000000 R09: 0000000000000000
[ 272.093936] R10: 0000000000000000 R11: ffffffffc0600000 R12: 0000000000000000
[ 272.101067] R13: ffffffffa666fbb8 R14: ffffffffc05b5528 R15: ffff969580b68c10
[ 272.108198] FS: 00007b930906fc40(0000) GS:ffff969603149000(0000) knlGS:0000000000000000
[ 272.116282] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 272.122024] CR2: 0000000000000058 CR3: 000000012631c000 CR4: 00000000003506f0
[ 272.129155] Call Trace:
[ 272.131606] <TASK>
[ 272.133709] ? acpi_dev_pm_attach+0xdd/0x110
[ 272.137985] platform_probe+0x69/0xa0
[ 272.141652] really_probe+0x152/0x310
[ 272.145318] __driver_probe_device+0x77/0x110
[ 272.149678] driver_probe_device+0x1e/0x190
[ 272.153864] __driver_attach+0x10b/0x1e0
[ 272.157790] ? driver_attach+0x20/0x20
[ 272.161542] bus_for_each_dev+0x107/0x150
[ 272.165553] bus_add_driver+0x15d/0x270
[ 272.169392] driver_register+0x65/0x110
[ 272.173232] ? cleanup_module+0xa80/0xa80 [i2c_cros_ec_tunnel 3a00532f3f4af4a9eade753f86b0f8dd4e4e5698]
[ 272.182617] do_one_initcall+0x110/0x350
[ 272.186543] ? security_kernfs_init_security+0x49/0xd0
[ 272.191682] ? __kernfs_new_node+0x1b9/0x240
[ 272.195954] ? security_kernfs_init_security+0x49/0xd0
[ 272.201093] ? __kernfs_new_node+0x1b9/0x240
[ 272.205365] ? kernfs_link_sibling+0x105/0x130
[ 272.209810] ? kernfs_next_descendant_post+0x1c/0xa0
[ 272.214773] ? kernfs_activate+0x57/0x70
[ 272.218699] ? kernfs_add_one+0x118/0x160
[ 272.222710] ? __kernfs_create_file+0x71/0xa0
[ 272.227069] ? sysfs_add_bin_file_mode_ns+0xd6/0x110
[ 272.232033] ? internal_create_group+0x453/0x4a0
[ 272.236651] ? __vunmap_range_noflush+0x214/0x2d0
[ 272.241355] ? __free_frozen_pages+0x1dc/0x420
[ 272.245799] ? free_vmap_area_noflush+0x10a/0x1c0
[ 272.250505] ? load_module+0x1509/0x16f0
[ 272.254431] do_init_module+0x60/0x230
[ 272.258181] __se_sys_finit_module+0x27a/0x370
[ 272.262627] do_syscall_64+0x6a/0xf0
[ 272.266206] ? do_syscall_64+0x76/0xf0
[ 272.269956] ? irqentry_exit_to_user_mode+0x79/0x90
[ 272.274836] entry_SYSCALL_64_after_hwframe+0x55/0x5d
[ 272.279887] RIP: 0033:0x7b9309168d39
[ 272.283466] Code: 5b 41 5c 5d c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d af 40 0c 00 f7 d8 64 89 01 8
[ 272.302210] RSP: 002b:00007fff50f1a288 EFLAGS: 00000246 ORIG_RAX: 000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: dp: drm_err => dev_err in HPD path to avoid NULL ptr
The function mtk_dp_wait_hpd_asserted() may be called before the
`mtk_dp->drm_dev` pointer is assigned in mtk_dp_bridge_attach().
Specifically it can be called via this callpath:
- mtk_edp_wait_hpd_asserted
- [panel probe]
- dp_aux_ep_probe
Using "drm" level prints anywhere in this callpath causes a NULL
pointer dereference. Change the error message directly in
mtk_dp_wait_hpd_asserted() to dev_err() to avoid this. Also change the
error messages in mtk_dp_parse_capabilities(), which is called by
mtk_dp_wait_hpd_asserted().
While touching these prints, also add the error code to them to make
future debugging easier. |
| In the Linux kernel, the following vulnerability has been resolved:
net: Fix null-ptr-deref by sock_lock_init_class_and_name() and rmmod.
When I ran the repro [0] and waited a few seconds, I observed two
LOCKDEP splats: a warning immediately followed by a null-ptr-deref. [1]
Reproduction Steps:
1) Mount CIFS
2) Add an iptables rule to drop incoming FIN packets for CIFS
3) Unmount CIFS
4) Unload the CIFS module
5) Remove the iptables rule
At step 3), the CIFS module calls sock_release() for the underlying
TCP socket, and it returns quickly. However, the socket remains in
FIN_WAIT_1 because incoming FIN packets are dropped.
At this point, the module's refcnt is 0 while the socket is still
alive, so the following rmmod command succeeds.
# ss -tan
State Recv-Q Send-Q Local Address:Port Peer Address:Port
FIN-WAIT-1 0 477 10.0.2.15:51062 10.0.0.137:445
# lsmod | grep cifs
cifs 1159168 0
This highlights a discrepancy between the lifetime of the CIFS module
and the underlying TCP socket. Even after CIFS calls sock_release()
and it returns, the TCP socket does not die immediately in order to
close the connection gracefully.
While this is generally fine, it causes an issue with LOCKDEP because
CIFS assigns a different lock class to the TCP socket's sk->sk_lock
using sock_lock_init_class_and_name().
Once an incoming packet is processed for the socket or a timer fires,
sk->sk_lock is acquired.
Then, LOCKDEP checks the lock context in check_wait_context(), where
hlock_class() is called to retrieve the lock class. However, since
the module has already been unloaded, hlock_class() logs a warning
and returns NULL, triggering the null-ptr-deref.
If LOCKDEP is enabled, we must ensure that a module calling
sock_lock_init_class_and_name() (CIFS, NFS, etc) cannot be unloaded
while such a socket is still alive to prevent this issue.
Let's hold the module reference in sock_lock_init_class_and_name()
and release it when the socket is freed in sk_prot_free().
Note that sock_lock_init() clears sk->sk_owner for svc_create_socket()
that calls sock_lock_init_class_and_name() for a listening socket,
which clones a socket by sk_clone_lock() without GFP_ZERO.
[0]:
CIFS_SERVER="10.0.0.137"
CIFS_PATH="//${CIFS_SERVER}/Users/Administrator/Desktop/CIFS_TEST"
DEV="enp0s3"
CRED="/root/WindowsCredential.txt"
MNT=$(mktemp -d /tmp/XXXXXX)
mount -t cifs ${CIFS_PATH} ${MNT} -o vers=3.0,credentials=${CRED},cache=none,echo_interval=1
iptables -A INPUT -s ${CIFS_SERVER} -j DROP
for i in $(seq 10);
do
umount ${MNT}
rmmod cifs
sleep 1
done
rm -r ${MNT}
iptables -D INPUT -s ${CIFS_SERVER} -j DROP
[1]:
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 10 PID: 0 at kernel/locking/lockdep.c:234 hlock_class (kernel/locking/lockdep.c:234 kernel/locking/lockdep.c:223)
Modules linked in: cifs_arc4 nls_ucs2_utils cifs_md4 [last unloaded: cifs]
CPU: 10 UID: 0 PID: 0 Comm: swapper/10 Not tainted 6.14.0 #36
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:hlock_class (kernel/locking/lockdep.c:234 kernel/locking/lockdep.c:223)
...
Call Trace:
<IRQ>
__lock_acquire (kernel/locking/lockdep.c:4853 kernel/locking/lockdep.c:5178)
lock_acquire (kernel/locking/lockdep.c:469 kernel/locking/lockdep.c:5853 kernel/locking/lockdep.c:5816)
_raw_spin_lock_nested (kernel/locking/spinlock.c:379)
tcp_v4_rcv (./include/linux/skbuff.h:1678 ./include/net/tcp.h:2547 net/ipv4/tcp_ipv4.c:2350)
...
BUG: kernel NULL pointer dereference, address: 00000000000000c4
PF: supervisor read access in kernel mode
PF: error_code(0x0000) - not-present page
PGD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 10 UID: 0 PID: 0 Comm: swapper/10 Tainted: G W 6.14.0 #36
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:__lock_acquire (kernel/
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix NULL pointer in can_accept_new_subflow
When testing valkey benchmark tool with MPTCP, the kernel panics in
'mptcp_can_accept_new_subflow' because subflow_req->msk is NULL.
Call trace:
mptcp_can_accept_new_subflow (./net/mptcp/subflow.c:63 (discriminator 4)) (P)
subflow_syn_recv_sock (./net/mptcp/subflow.c:854)
tcp_check_req (./net/ipv4/tcp_minisocks.c:863)
tcp_v4_rcv (./net/ipv4/tcp_ipv4.c:2268)
ip_protocol_deliver_rcu (./net/ipv4/ip_input.c:207)
ip_local_deliver_finish (./net/ipv4/ip_input.c:234)
ip_local_deliver (./net/ipv4/ip_input.c:254)
ip_rcv_finish (./net/ipv4/ip_input.c:449)
...
According to the debug log, the same req received two SYN-ACK in a very
short time, very likely because the client retransmits the syn ack due
to multiple reasons.
Even if the packets are transmitted with a relevant time interval, they
can be processed by the server on different CPUs concurrently). The
'subflow_req->msk' ownership is transferred to the subflow the first,
and there will be a risk of a null pointer dereference here.
This patch fixes this issue by moving the 'subflow_req->msk' under the
`own_req == true` conditional.
Note that the !msk check in subflow_hmac_valid() can be dropped, because
the same check already exists under the own_req mpj branch where the
code has been moved to. |
| In the Linux kernel, the following vulnerability has been resolved:
mfd: ene-kb3930: Fix a potential NULL pointer dereference
The off_gpios could be NULL. Add missing check in the kb3930_probe().
This is similar to the issue fixed in commit b1ba8bcb2d1f
("backlight: hx8357: Fix potential NULL pointer dereference").
This was detected by our static analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
i3c: Add NULL pointer check in i3c_master_queue_ibi()
The I3C master driver may receive an IBI from a target device that has not
been probed yet. In such cases, the master calls `i3c_master_queue_ibi()`
to queue an IBI work task, leading to "Unable to handle kernel read from
unreadable memory" and resulting in a kernel panic.
Typical IBI handling flow:
1. The I3C master scans target devices and probes their respective drivers.
2. The target device driver calls `i3c_device_request_ibi()` to enable IBI
and assigns `dev->ibi = ibi`.
3. The I3C master receives an IBI from the target device and calls
`i3c_master_queue_ibi()` to queue the target device driver’s IBI
handler task.
However, since target device events are asynchronous to the I3C probe
sequence, step 3 may occur before step 2, causing `dev->ibi` to be `NULL`,
leading to a kernel panic.
Add a NULL pointer check in `i3c_master_queue_ibi()` to prevent accessing
an uninitialized `dev->ibi`, ensuring stability. |