CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
net/rds: fix WARNING in rds_conn_connect_if_down
If connection isn't established yet, get_mr() will fail, trigger connection after
get_mr(). |
In the Linux kernel, the following vulnerability has been resolved:
netlink: Fix kernel-infoleak-after-free in __skb_datagram_iter
syzbot reported the following uninit-value access issue [1]:
netlink_to_full_skb() creates a new `skb` and puts the `skb->data`
passed as a 1st arg of netlink_to_full_skb() onto new `skb`. The data
size is specified as `len` and passed to skb_put_data(). This `len`
is based on `skb->end` that is not data offset but buffer offset. The
`skb->end` contains data and tailroom. Since the tailroom is not
initialized when the new `skb` created, KMSAN detects uninitialized
memory area when copying the data.
This patch resolved this issue by correct the len from `skb->end` to
`skb->len`, which is the actual data offset.
BUG: KMSAN: kernel-infoleak-after-free in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak-after-free in copy_to_user_iter lib/iov_iter.c:24 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_ubuf include/linux/iov_iter.h:29 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance include/linux/iov_iter.h:271 [inline]
BUG: KMSAN: kernel-infoleak-after-free in _copy_to_iter+0x364/0x2520 lib/iov_iter.c:186
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
copy_to_user_iter lib/iov_iter.c:24 [inline]
iterate_ubuf include/linux/iov_iter.h:29 [inline]
iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
iterate_and_advance include/linux/iov_iter.h:271 [inline]
_copy_to_iter+0x364/0x2520 lib/iov_iter.c:186
copy_to_iter include/linux/uio.h:197 [inline]
simple_copy_to_iter+0x68/0xa0 net/core/datagram.c:532
__skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:420
skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:546
skb_copy_datagram_msg include/linux/skbuff.h:3960 [inline]
packet_recvmsg+0xd9c/0x2000 net/packet/af_packet.c:3482
sock_recvmsg_nosec net/socket.c:1044 [inline]
sock_recvmsg net/socket.c:1066 [inline]
sock_read_iter+0x467/0x580 net/socket.c:1136
call_read_iter include/linux/fs.h:2014 [inline]
new_sync_read fs/read_write.c:389 [inline]
vfs_read+0x8f6/0xe00 fs/read_write.c:470
ksys_read+0x20f/0x4c0 fs/read_write.c:613
__do_sys_read fs/read_write.c:623 [inline]
__se_sys_read fs/read_write.c:621 [inline]
__x64_sys_read+0x93/0xd0 fs/read_write.c:621
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was stored to memory at:
skb_put_data include/linux/skbuff.h:2622 [inline]
netlink_to_full_skb net/netlink/af_netlink.c:181 [inline]
__netlink_deliver_tap_skb net/netlink/af_netlink.c:298 [inline]
__netlink_deliver_tap+0x5be/0xc90 net/netlink/af_netlink.c:325
netlink_deliver_tap net/netlink/af_netlink.c:338 [inline]
netlink_deliver_tap_kernel net/netlink/af_netlink.c:347 [inline]
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x10f1/0x1250 net/netlink/af_netlink.c:1368
netlink_sendmsg+0x1238/0x13d0 net/netlink/af_netlink.c:1910
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendmsg net/socket.c:2676 [inline]
__se_sys_sendmsg net/socket.c:2674 [inline]
__x64_sys_sendmsg+0x307/0x490 net/socket.c:2674
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was created at:
free_pages_prepare mm/page_alloc.c:1087 [inline]
free_unref_page_prepare+0xb0/0xa40 mm/page_alloc.c:2347
free_unref_page_list+0xeb/0x1100 mm/page_alloc.c:2533
release_pages+0x23d3/0x2410 mm/swap.c:1042
free_pages_and_swap_cache+0xd9/0xf0 mm/swap_state.c:316
tlb_batch_pages
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
dccp: fix dccp_v4_err()/dccp_v6_err() again
dh->dccph_x is the 9th byte (offset 8) in "struct dccp_hdr",
not in the "byte 7" as Jann claimed.
We need to make sure the ICMP messages are big enough,
using more standard ways (no more assumptions).
syzbot reported:
BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2667 [inline]
BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2681 [inline]
BUG: KMSAN: uninit-value in dccp_v6_err+0x426/0x1aa0 net/dccp/ipv6.c:94
pskb_may_pull_reason include/linux/skbuff.h:2667 [inline]
pskb_may_pull include/linux/skbuff.h:2681 [inline]
dccp_v6_err+0x426/0x1aa0 net/dccp/ipv6.c:94
icmpv6_notify+0x4c7/0x880 net/ipv6/icmp.c:867
icmpv6_rcv+0x19d5/0x30d0
ip6_protocol_deliver_rcu+0xda6/0x2a60 net/ipv6/ip6_input.c:438
ip6_input_finish net/ipv6/ip6_input.c:483 [inline]
NF_HOOK include/linux/netfilter.h:304 [inline]
ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492
ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586
dst_input include/net/dst.h:468 [inline]
ip6_rcv_finish+0x5db/0x870 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:304 [inline]
ipv6_rcv+0xda/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core net/core/dev.c:5523 [inline]
__netif_receive_skb+0x1a6/0x5a0 net/core/dev.c:5637
netif_receive_skb_internal net/core/dev.c:5723 [inline]
netif_receive_skb+0x58/0x660 net/core/dev.c:5782
tun_rx_batched+0x83b/0x920
tun_get_user+0x564c/0x6940 drivers/net/tun.c:2002
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:1985 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x8ef/0x15c0 fs/read_write.c:584
ksys_write+0x20f/0x4c0 fs/read_write.c:637
__do_sys_write fs/read_write.c:649 [inline]
__se_sys_write fs/read_write.c:646 [inline]
__x64_sys_write+0x93/0xd0 fs/read_write.c:646
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook+0x12f/0xb70 mm/slab.h:767
slab_alloc_node mm/slub.c:3478 [inline]
kmem_cache_alloc_node+0x577/0xa80 mm/slub.c:3523
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:559
__alloc_skb+0x318/0x740 net/core/skbuff.c:650
alloc_skb include/linux/skbuff.h:1286 [inline]
alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6313
sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2795
tun_alloc_skb drivers/net/tun.c:1531 [inline]
tun_get_user+0x23cf/0x6940 drivers/net/tun.c:1846
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:1985 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x8ef/0x15c0 fs/read_write.c:584
ksys_write+0x20f/0x4c0 fs/read_write.c:637
__do_sys_write fs/read_write.c:649 [inline]
__se_sys_write fs/read_write.c:646 [inline]
__x64_sys_write+0x93/0xd0 fs/read_write.c:646
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
CPU: 0 PID: 4995 Comm: syz-executor153 Not tainted 6.6.0-rc1-syzkaller-00014-ga747acc0b752 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023 |
In the Linux kernel, the following vulnerability has been resolved:
net: zero-initialize tc skb extension on allocation
Function skb_ext_add() doesn't initialize created skb extension with any
value and leaves it up to the user. However, since extension of type
TC_SKB_EXT originally contained only single value tc_skb_ext->chain its
users used to just assign the chain value without setting whole extension
memory to zero first. This assumption changed when TC_SKB_EXT extension was
extended with additional fields but not all users were updated to
initialize the new fields which leads to use of uninitialized memory
afterwards. UBSAN log:
[ 778.299821] UBSAN: invalid-load in net/openvswitch/flow.c:899:28
[ 778.301495] load of value 107 is not a valid value for type '_Bool'
[ 778.303215] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.12.0-rc7+ #2
[ 778.304933] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 778.307901] Call Trace:
[ 778.308680] <IRQ>
[ 778.309358] dump_stack+0xbb/0x107
[ 778.310307] ubsan_epilogue+0x5/0x40
[ 778.311167] __ubsan_handle_load_invalid_value.cold+0x43/0x48
[ 778.312454] ? memset+0x20/0x40
[ 778.313230] ovs_flow_key_extract.cold+0xf/0x14 [openvswitch]
[ 778.314532] ovs_vport_receive+0x19e/0x2e0 [openvswitch]
[ 778.315749] ? ovs_vport_find_upcall_portid+0x330/0x330 [openvswitch]
[ 778.317188] ? create_prof_cpu_mask+0x20/0x20
[ 778.318220] ? arch_stack_walk+0x82/0xf0
[ 778.319153] ? secondary_startup_64_no_verify+0xb0/0xbb
[ 778.320399] ? stack_trace_save+0x91/0xc0
[ 778.321362] ? stack_trace_consume_entry+0x160/0x160
[ 778.322517] ? lock_release+0x52e/0x760
[ 778.323444] netdev_frame_hook+0x323/0x610 [openvswitch]
[ 778.324668] ? ovs_netdev_get_vport+0xe0/0xe0 [openvswitch]
[ 778.325950] __netif_receive_skb_core+0x771/0x2db0
[ 778.327067] ? lock_downgrade+0x6e0/0x6f0
[ 778.328021] ? lock_acquire+0x565/0x720
[ 778.328940] ? generic_xdp_tx+0x4f0/0x4f0
[ 778.329902] ? inet_gro_receive+0x2a7/0x10a0
[ 778.330914] ? lock_downgrade+0x6f0/0x6f0
[ 778.331867] ? udp4_gro_receive+0x4c4/0x13e0
[ 778.332876] ? lock_release+0x52e/0x760
[ 778.333808] ? dev_gro_receive+0xcc8/0x2380
[ 778.334810] ? lock_downgrade+0x6f0/0x6f0
[ 778.335769] __netif_receive_skb_list_core+0x295/0x820
[ 778.336955] ? process_backlog+0x780/0x780
[ 778.337941] ? mlx5e_rep_tc_netdevice_event_unregister+0x20/0x20 [mlx5_core]
[ 778.339613] ? seqcount_lockdep_reader_access.constprop.0+0xa7/0xc0
[ 778.341033] ? kvm_clock_get_cycles+0x14/0x20
[ 778.342072] netif_receive_skb_list_internal+0x5f5/0xcb0
[ 778.343288] ? __kasan_kmalloc+0x7a/0x90
[ 778.344234] ? mlx5e_handle_rx_cqe_mpwrq+0x9e0/0x9e0 [mlx5_core]
[ 778.345676] ? mlx5e_xmit_xdp_frame_mpwqe+0x14d0/0x14d0 [mlx5_core]
[ 778.347140] ? __netif_receive_skb_list_core+0x820/0x820
[ 778.348351] ? mlx5e_post_rx_mpwqes+0xa6/0x25d0 [mlx5_core]
[ 778.349688] ? napi_gro_flush+0x26c/0x3c0
[ 778.350641] napi_complete_done+0x188/0x6b0
[ 778.351627] mlx5e_napi_poll+0x373/0x1b80 [mlx5_core]
[ 778.352853] __napi_poll+0x9f/0x510
[ 778.353704] ? mlx5_flow_namespace_set_mode+0x260/0x260 [mlx5_core]
[ 778.355158] net_rx_action+0x34c/0xa40
[ 778.356060] ? napi_threaded_poll+0x3d0/0x3d0
[ 778.357083] ? sched_clock_cpu+0x18/0x190
[ 778.358041] ? __common_interrupt+0x8e/0x1a0
[ 778.359045] __do_softirq+0x1ce/0x984
[ 778.359938] __irq_exit_rcu+0x137/0x1d0
[ 778.360865] irq_exit_rcu+0xa/0x20
[ 778.361708] common_interrupt+0x80/0xa0
[ 778.362640] </IRQ>
[ 778.363212] asm_common_interrupt+0x1e/0x40
[ 778.364204] RIP: 0010:native_safe_halt+0xe/0x10
[ 778.365273] Code: 4f ff ff ff 4c 89 e7 e8 50 3f 40 fe e9 dc fe ff ff 48 89 df e8 43 3f 40 fe eb 90 cc e9 07 00 00 00 0f 00 2d 74 05 62 00 fb f4 <c3> 90 e9 07 00 00 00 0f 00 2d 64 05 62 00 f4 c3 cc cc 0f 1f 44 00
[ 778.369355] RSP: 0018:ffffffff84407e48 EFLAGS: 00000246
[ 778.370570] RAX
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: rawmidi - fix the uninitalized user_pversion
The user_pversion was uninitialized for the user space file structure
in the open function, because the file private structure use
kmalloc for the allocation.
The kernel ALSA sequencer code clears the file structure, so no additional
fixes are required.
BugLink: https://github.com/alsa-project/alsa-lib/issues/178 |
In the Linux kernel, the following vulnerability has been resolved:
iio: pressure: zpa2326: fix information leak in triggered buffer
The 'sample' local struct is used to push data to user space from a
triggered buffer, but it has a hole between the temperature and the
timestamp (u32 pressure, u16 temperature, GAP, u64 timestamp).
This hole is never initialized.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: dummy: iio_simply_dummy_buffer: fix information leak in triggered buffer
The 'data' array is allocated via kmalloc() and it is used to push data
to user space from a triggered buffer, but it does not set values for
inactive channels, as it only uses iio_for_each_active_channel()
to assign new values.
Use kzalloc for the memory allocation to avoid pushing uninitialized
information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: light: bh1745: fix information leak in triggered buffer
The 'scan' local struct is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: imu: kmx61: fix information leak in triggered buffer
The 'buffer' local array is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the array to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: rockchip_saradc: fix information leak in triggered buffer
The 'data' local struct is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ti-ads1119: fix information leak in triggered buffer
The 'scan' local struct is used to push data to user space from a
triggered buffer, but it has a hole between the sample (unsigned int)
and the timestamp. This hole is never initialized.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
In the Linux kernel, the following vulnerability has been resolved:
arm64: ptrace: fix partial SETREGSET for NT_ARM_FPMR
Currently fpmr_set() doesn't initialize the temporary 'fpmr' variable,
and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently an arbitrary value will be written back to
target->thread.uw.fpmr, potentially leaking up to 64 bits of memory from
the kernel stack. The read is limited to a specific slot on the stack,
and the issue does not provide a write mechanism.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
contents of FPMR will be retained.
Before this patch:
| # ./fpmr-test
| Attempting to write NT_ARM_FPMR::fpmr = 0x900d900d900d900d
| SETREGSET(nt=0x40e, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d
|
| Attempting to write NT_ARM_FPMR (zero length)
| SETREGSET(nt=0x40e, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0xffff800083963d50
After this patch:
| # ./fpmr-test
| Attempting to write NT_ARM_FPMR::fpmr = 0x900d900d900d900d
| SETREGSET(nt=0x40e, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d
|
| Attempting to write NT_ARM_FPMR (zero length)
| SETREGSET(nt=0x40e, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d |
In the Linux kernel, the following vulnerability has been resolved:
arm64: ptrace: fix partial SETREGSET for NT_ARM_POE
Currently poe_set() doesn't initialize the temporary 'ctrl' variable,
and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently an arbitrary value will be written back to
target->thread.por_el0, potentially leaking up to 64 bits of memory from
the kernel stack. The read is limited to a specific slot on the stack,
and the issue does not provide a write mechanism.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
contents of POR_EL1 will be retained.
Before this patch:
| # ./poe-test
| Attempting to write NT_ARM_POE::por_el0 = 0x900d900d900d900d
| SETREGSET(nt=0x40f, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d
|
| Attempting to write NT_ARM_POE (zero length)
| SETREGSET(nt=0x40f, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0xffff8000839c3d50
After this patch:
| # ./poe-test
| Attempting to write NT_ARM_POE::por_el0 = 0x900d900d900d900d
| SETREGSET(nt=0x40f, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d
|
| Attempting to write NT_ARM_POE (zero length)
| SETREGSET(nt=0x40f, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d |
In the Linux kernel, the following vulnerability has been resolved:
arm64: ptrace: fix partial SETREGSET for NT_ARM_TAGGED_ADDR_CTRL
Currently tagged_addr_ctrl_set() doesn't initialize the temporary 'ctrl'
variable, and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently tagged_addr_ctrl_set() will consume an
arbitrary value, potentially leaking up to 64 bits of memory from the
kernel stack. The read is limited to a specific slot on the stack, and
the issue does not provide a write mechanism.
As set_tagged_addr_ctrl() only accepts values where bits [63:4] zero and
rejects other values, a partial SETREGSET attempt will randomly succeed
or fail depending on the value of the uninitialized value, and the
exposure is significantly limited.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
value of the tagged address ctrl will be retained.
The NT_ARM_TAGGED_ADDR_CTRL regset is only visible in the
user_aarch64_view used by a native AArch64 task to manipulate another
native AArch64 task. As get_tagged_addr_ctrl() only returns an error
value when called for a compat task, tagged_addr_ctrl_get() and
tagged_addr_ctrl_set() should never observe an error value from
get_tagged_addr_ctrl(). Add a WARN_ON_ONCE() to both to indicate that
such an error would be unexpected, and error handlnig is not missing in
either case. |
In the Linux kernel, the following vulnerability has been resolved:
netrom: check buffer length before accessing it
Syzkaller reports an uninit value read from ax25cmp when sending raw message
through ieee802154 implementation.
=====================================================
BUG: KMSAN: uninit-value in ax25cmp+0x3a5/0x460 net/ax25/ax25_addr.c:119
ax25cmp+0x3a5/0x460 net/ax25/ax25_addr.c:119
nr_dev_get+0x20e/0x450 net/netrom/nr_route.c:601
nr_route_frame+0x1a2/0xfc0 net/netrom/nr_route.c:774
nr_xmit+0x5a/0x1c0 net/netrom/nr_dev.c:144
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564
__dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
raw_sendmsg+0x654/0xc10 net/ieee802154/socket.c:299
ieee802154_sock_sendmsg+0x91/0xc0 net/ieee802154/socket.c:96
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendmsg net/socket.c:2676 [inline]
__se_sys_sendmsg net/socket.c:2674 [inline]
__x64_sys_sendmsg+0x307/0x490 net/socket.c:2674
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was created at:
slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768
slab_alloc_node mm/slub.c:3478 [inline]
kmem_cache_alloc_node+0x5e9/0xb10 mm/slub.c:3523
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:560
__alloc_skb+0x318/0x740 net/core/skbuff.c:651
alloc_skb include/linux/skbuff.h:1286 [inline]
alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6334
sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2780
sock_alloc_send_skb include/net/sock.h:1884 [inline]
raw_sendmsg+0x36d/0xc10 net/ieee802154/socket.c:282
ieee802154_sock_sendmsg+0x91/0xc0 net/ieee802154/socket.c:96
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendmsg net/socket.c:2676 [inline]
__se_sys_sendmsg net/socket.c:2674 [inline]
__x64_sys_sendmsg+0x307/0x490 net/socket.c:2674
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
CPU: 0 PID: 5037 Comm: syz-executor166 Not tainted 6.7.0-rc7-syzkaller-00003-gfbafc3e621c3 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023
=====================================================
This issue occurs because the skb buffer is too small, and it's actual
allocation is aligned. This hides an actual issue, which is that nr_route_frame
does not validate the buffer size before using it.
Fix this issue by checking skb->len before accessing any fields in skb->data.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: dib3000mb: fix uninit-value in dib3000_write_reg
Syzbot reports [1] an uninitialized value issue found by KMSAN in
dib3000_read_reg().
Local u8 rb[2] is used in i2c_transfer() as a read buffer; in case
that call fails, the buffer may end up with some undefined values.
Since no elaborate error handling is expected in dib3000_write_reg(),
simply zero out rb buffer to mitigate the problem.
[1] Syzkaller report
dvb-usb: bulk message failed: -22 (6/0)
=====================================================
BUG: KMSAN: uninit-value in dib3000mb_attach+0x2d8/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758
dib3000mb_attach+0x2d8/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758
dibusb_dib3000mb_frontend_attach+0x155/0x2f0 drivers/media/usb/dvb-usb/dibusb-mb.c:31
dvb_usb_adapter_frontend_init+0xed/0x9a0 drivers/media/usb/dvb-usb/dvb-usb-dvb.c:290
dvb_usb_adapter_init drivers/media/usb/dvb-usb/dvb-usb-init.c:90 [inline]
dvb_usb_init drivers/media/usb/dvb-usb/dvb-usb-init.c:186 [inline]
dvb_usb_device_init+0x25a8/0x3760 drivers/media/usb/dvb-usb/dvb-usb-init.c:310
dibusb_probe+0x46/0x250 drivers/media/usb/dvb-usb/dibusb-mb.c:110
...
Local variable rb created at:
dib3000_read_reg+0x86/0x4e0 drivers/media/dvb-frontends/dib3000mb.c:54
dib3000mb_attach+0x123/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758
... |
In the Linux kernel, the following vulnerability has been resolved:
rtc: check if __rtc_read_time was successful in rtc_timer_do_work()
If the __rtc_read_time call fails,, the struct rtc_time tm; may contain
uninitialized data, or an illegal date/time read from the RTC hardware.
When calling rtc_tm_to_ktime later, the result may be a very large value
(possibly KTIME_MAX). If there are periodic timers in rtc->timerqueue,
they will continually expire, may causing kernel softlockup. |
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix uninitialized value in ocfs2_file_read_iter()
Syzbot has reported the following KMSAN splat:
BUG: KMSAN: uninit-value in ocfs2_file_read_iter+0x9a4/0xf80
ocfs2_file_read_iter+0x9a4/0xf80
__io_read+0x8d4/0x20f0
io_read+0x3e/0xf0
io_issue_sqe+0x42b/0x22c0
io_wq_submit_work+0xaf9/0xdc0
io_worker_handle_work+0xd13/0x2110
io_wq_worker+0x447/0x1410
ret_from_fork+0x6f/0x90
ret_from_fork_asm+0x1a/0x30
Uninit was created at:
__alloc_pages_noprof+0x9a7/0xe00
alloc_pages_mpol_noprof+0x299/0x990
alloc_pages_noprof+0x1bf/0x1e0
allocate_slab+0x33a/0x1250
___slab_alloc+0x12ef/0x35e0
kmem_cache_alloc_bulk_noprof+0x486/0x1330
__io_alloc_req_refill+0x84/0x560
io_submit_sqes+0x172f/0x2f30
__se_sys_io_uring_enter+0x406/0x41c0
__x64_sys_io_uring_enter+0x11f/0x1a0
x64_sys_call+0x2b54/0x3ba0
do_syscall_64+0xcd/0x1e0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Since an instance of 'struct kiocb' may be passed from the block layer
with 'private' field uninitialized, introduce 'ocfs2_iocb_init_rw_locked()'
and use it from where 'ocfs2_dio_end_io()' might take care, i.e. in
'ocfs2_file_read_iter()' and 'ocfs2_file_write_iter()'. |
In the Linux kernel, the following vulnerability has been resolved:
fs: Fix uninitialized value issue in from_kuid and from_kgid
ocfs2_setattr() uses attr->ia_mode, attr->ia_uid and attr->ia_gid in
a trace point even though ATTR_MODE, ATTR_UID and ATTR_GID aren't set.
Initialize all fields of newattrs to avoid uninitialized variables, by
checking if ATTR_MODE, ATTR_UID, ATTR_GID are initialized, otherwise 0. |
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: qcom-pmic: init value of hdr_len/txbuf_len earlier
If the read of USB_PDPHY_RX_ACKNOWLEDGE_REG failed, then hdr_len and
txbuf_len are uninitialized. This commit stops to print uninitialized
value and misleading/false data. |