| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: tc358743: Fix use-after-free bugs caused by orphan timer in probe
The state->timer is a cyclic timer that schedules work_i2c_poll and
delayed_work_enable_hotplug, while rearming itself. Using timer_delete()
fails to guarantee the timer isn't still running when destroyed, similarly
cancel_delayed_work() cannot ensure delayed_work_enable_hotplug has
terminated if already executing. During probe failure after timer
initialization, these may continue running as orphans and reference the
already-freed tc358743_state object through tc358743_irq_poll_timer.
The following is the trace captured by KASAN.
BUG: KASAN: slab-use-after-free in __run_timer_base.part.0+0x7d7/0x8c0
Write of size 8 at addr ffff88800ded83c8 by task swapper/1/0
...
Call Trace:
<IRQ>
dump_stack_lvl+0x55/0x70
print_report+0xcf/0x610
? __pfx_sched_balance_find_src_group+0x10/0x10
? __run_timer_base.part.0+0x7d7/0x8c0
kasan_report+0xb8/0xf0
? __run_timer_base.part.0+0x7d7/0x8c0
__run_timer_base.part.0+0x7d7/0x8c0
? rcu_sched_clock_irq+0xb06/0x27d0
? __pfx___run_timer_base.part.0+0x10/0x10
? try_to_wake_up+0xb15/0x1960
? tmigr_update_events+0x280/0x740
? _raw_spin_lock_irq+0x80/0xe0
? __pfx__raw_spin_lock_irq+0x10/0x10
tmigr_handle_remote_up+0x603/0x7e0
? __pfx_tmigr_handle_remote_up+0x10/0x10
? sched_balance_trigger+0x98/0x9f0
? sched_tick+0x221/0x5a0
? _raw_spin_lock_irq+0x80/0xe0
? __pfx__raw_spin_lock_irq+0x10/0x10
? tick_nohz_handler+0x339/0x440
? __pfx_tmigr_handle_remote_up+0x10/0x10
__walk_groups.isra.0+0x42/0x150
tmigr_handle_remote+0x1f4/0x2e0
? __pfx_tmigr_handle_remote+0x10/0x10
? ktime_get+0x60/0x140
? lapic_next_event+0x11/0x20
? clockevents_program_event+0x1d4/0x2a0
? hrtimer_interrupt+0x322/0x780
handle_softirqs+0x16a/0x550
irq_exit_rcu+0xaf/0xe0
sysvec_apic_timer_interrupt+0x70/0x80
</IRQ>
...
Allocated by task 141:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x7f/0x90
__kmalloc_node_track_caller_noprof+0x198/0x430
devm_kmalloc+0x7b/0x1e0
tc358743_probe+0xb7/0x610 i2c_device_probe+0x51d/0x880
really_probe+0x1ca/0x5c0
__driver_probe_device+0x248/0x310
driver_probe_device+0x44/0x120
__device_attach_driver+0x174/0x220
bus_for_each_drv+0x100/0x190
__device_attach+0x206/0x370
bus_probe_device+0x123/0x170
device_add+0xd25/0x1470
i2c_new_client_device+0x7a0/0xcd0
do_one_initcall+0x89/0x300
do_init_module+0x29d/0x7f0
load_module+0x4f48/0x69e0
init_module_from_file+0xe4/0x150
idempotent_init_module+0x320/0x670
__x64_sys_finit_module+0xbd/0x120
do_syscall_64+0xac/0x280
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 141:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3a/0x60
__kasan_slab_free+0x3f/0x50
kfree+0x137/0x370
release_nodes+0xa4/0x100
devres_release_group+0x1b2/0x380
i2c_device_probe+0x694/0x880
really_probe+0x1ca/0x5c0
__driver_probe_device+0x248/0x310
driver_probe_device+0x44/0x120
__device_attach_driver+0x174/0x220
bus_for_each_drv+0x100/0x190
__device_attach+0x206/0x370
bus_probe_device+0x123/0x170
device_add+0xd25/0x1470
i2c_new_client_device+0x7a0/0xcd0
do_one_initcall+0x89/0x300
do_init_module+0x29d/0x7f0
load_module+0x4f48/0x69e0
init_module_from_file+0xe4/0x150
idempotent_init_module+0x320/0x670
__x64_sys_finit_module+0xbd/0x120
do_syscall_64+0xac/0x280
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
Replace timer_delete() with timer_delete_sync() and cancel_delayed_work()
with cancel_delayed_work_sync() to ensure proper termination of timer and
work items before resource cleanup.
This bug was initially identified through static analysis. For reproduction
and testing, I created a functional emulation of the tc358743 device via a
kernel module and introduced faults through the debugfs interface. |
| In the Linux kernel, the following vulnerability has been resolved:
media: tuner: xc5000: Fix use-after-free in xc5000_release
The original code uses cancel_delayed_work() in xc5000_release(), which
does not guarantee that the delayed work item timer_sleep has fully
completed if it was already running. This leads to use-after-free scenarios
where xc5000_release() may free the xc5000_priv while timer_sleep is still
active and attempts to dereference the xc5000_priv.
A typical race condition is illustrated below:
CPU 0 (release thread) | CPU 1 (delayed work callback)
xc5000_release() | xc5000_do_timer_sleep()
cancel_delayed_work() |
hybrid_tuner_release_state(priv) |
kfree(priv) |
| priv = container_of() // UAF
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the timer_sleep is properly canceled before the xc5000_priv memory
is deallocated.
A deadlock concern was considered: xc5000_release() is called in a process
context and is not holding any locks that the timer_sleep work item might
also need. Therefore, the use of the _sync() variant is safe here.
This bug was initially identified through static analysis.
[hverkuil: fix typo in Subject: tunner -> tuner] |
| In the Linux kernel, the following vulnerability has been resolved:
media: rc: fix races with imon_disconnect()
Syzbot reports a KASAN issue as below:
BUG: KASAN: use-after-free in __create_pipe include/linux/usb.h:1945 [inline]
BUG: KASAN: use-after-free in send_packet+0xa2d/0xbc0 drivers/media/rc/imon.c:627
Read of size 4 at addr ffff8880256fb000 by task syz-executor314/4465
CPU: 2 PID: 4465 Comm: syz-executor314 Not tainted 6.0.0-rc1-syzkaller #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:317 [inline]
print_report.cold+0x2ba/0x6e9 mm/kasan/report.c:433
kasan_report+0xb1/0x1e0 mm/kasan/report.c:495
__create_pipe include/linux/usb.h:1945 [inline]
send_packet+0xa2d/0xbc0 drivers/media/rc/imon.c:627
vfd_write+0x2d9/0x550 drivers/media/rc/imon.c:991
vfs_write+0x2d7/0xdd0 fs/read_write.c:576
ksys_write+0x127/0x250 fs/read_write.c:631
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The iMON driver improperly releases the usb_device reference in
imon_disconnect without coordinating with active users of the
device.
Specifically, the fields usbdev_intf0 and usbdev_intf1 are not
protected by the users counter (ictx->users). During probe,
imon_init_intf0 or imon_init_intf1 increments the usb_device
reference count depending on the interface. However, during
disconnect, usb_put_dev is called unconditionally, regardless of
actual usage.
As a result, if vfd_write or other operations are still in
progress after disconnect, this can lead to a use-after-free of
the usb_device pointer.
Thread 1 vfd_write Thread 2 imon_disconnect
...
if
usb_put_dev(ictx->usbdev_intf0)
else
usb_put_dev(ictx->usbdev_intf1)
...
while
send_packet
if
pipe = usb_sndintpipe(
ictx->usbdev_intf0) UAF
else
pipe = usb_sndctrlpipe(
ictx->usbdev_intf0, 0) UAF
Guard access to usbdev_intf0 and usbdev_intf1 after disconnect by
checking ictx->disconnected in all writer paths. Add early return
with -ENODEV in send_packet(), vfd_write(), lcd_write() and
display_open() if the device is no longer present.
Set and read ictx->disconnected under ictx->lock to ensure memory
synchronization. Acquire the lock in imon_disconnect() before setting
the flag to synchronize with any ongoing operations.
Ensure writers exit early and safely after disconnect before the USB
core proceeds with cleanup.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: swap: check for stable address space before operating on the VMA
It is possible to hit a zero entry while traversing the vmas in unuse_mm()
called from swapoff path and accessing it causes the OOPS:
Unable to handle kernel NULL pointer dereference at virtual address
0000000000000446--> Loading the memory from offset 0x40 on the
XA_ZERO_ENTRY as address.
Mem abort info:
ESR = 0x0000000096000005
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x05: level 1 translation fault
The issue is manifested from the below race between the fork() on a
process and swapoff:
fork(dup_mmap()) swapoff(unuse_mm)
--------------- -----------------
1) Identical mtree is built using
__mt_dup().
2) copy_pte_range()-->
copy_nonpresent_pte():
The dst mm is added into the
mmlist to be visible to the
swapoff operation.
3) Fatal signal is sent to the parent
process(which is the current during the
fork) thus skip the duplication of the
vmas and mark the vma range with
XA_ZERO_ENTRY as a marker for this process
that helps during exit_mmap().
4) swapoff is tried on the
'mm' added to the 'mmlist' as
part of the 2.
5) unuse_mm(), that iterates
through the vma's of this 'mm'
will hit the non-NULL zero entry
and operating on this zero entry
as a vma is resulting into the
oops.
The proper fix would be around not exposing this partially-valid tree to
others when droping the mmap lock, which is being solved with [1]. A
simpler solution would be checking for MMF_UNSTABLE, as it is set if
mm_struct is not fully initialized in dup_mmap().
Thanks to Liam/Lorenzo/David for all the suggestions in fixing this
issue. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix NULL dereference in ath11k_qmi_m3_load()
If ab->fw.m3_data points to data, then fw pointer remains null.
Further, if m3_mem is not allocated, then fw is dereferenced to be
passed to ath11k_err function.
Replace fw->size by m3_len.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| NLnet Labs Unbound up to and including version 1.24.2 is vulnerable to possible domain hijack attacks. Promiscuous NS RRSets that complement positive DNS replies in the authority section can be used to trick resolvers to update their delegation information for the zone. Usually these RRSets are used to update the resolver's knowledge of the zone's name servers. A malicious actor can exploit the possible poisonous effect by injecting NS RRSets (and possibly their respective address records) in a reply. This could be done for example by trying to spoof a packet or fragmentation attacks. Unbound would then proceed to update the NS RRSet data it already has since the new data has enough trust for it, i.e., in-zone data for the delegation point. Unbound 1.24.1 includes a fix that scrubs unsolicited NS RRSets (and their respective address records) from replies mitigating the possible poison effect. Unbound 1.24.2 includes an additional fix that scrubs unsolicited NS RRSets (and their respective address records) from YXDOMAIN and non-referral nodata replies, further mitigating the possible poison effect. |
| Sitecore PowerShell Extensions, an add-on to Sitecore Experience Manager (XM) and Experience Platform (XP), through version 7.0 is vulnerable to an unrestricted file upload issue. A remote, authenticated attacker can upload arbitrary files to the server using crafted HTTP requests, resulting in remote code execution. |
| An authenticated remote code execution vulnerability exists in NSClient++ version 0.5.2.35 when the web interface and ExternalScripts module are enabled. A remote attacker with the administrator password can authenticate to the web interface (default port 8443), inject arbitrary commands as external scripts via the /settings/query.json API, save the configuration, and trigger the script via the /query/{name} endpoint. The injected commands are executed with SYSTEM privileges, enabling full remote compromise.
This capability is an intended feature, but the lack of safeguards or privilege separation makes it risky when exposed to untrusted actors. |
| A local privilege escalation vulnerability exists in NSClient++ 0.5.2.35 when both the web interface and ExternalScripts features are enabled. The configuration file (nsclient.ini) stores the administrative password in plaintext and is readable by local users. By extracting this password, an attacker can authenticate to the NSClient++ web interface (typically accessible on port 8443) and abuse the ExternalScripts plugin to inject and execute arbitrary commands as SYSTEM by registering a custom script, saving the configuration, and triggering it via the API.
This behavior is documented but insecure, as the plaintext credential exposure undermines access isolation between local users and administrative functions. |
| An authenticated local file inclusion vulnerability exists in Microweber CMS versions <= 1.2.11 through misuse of the backup management API. Authenticated users can abuse the /api/BackupV2/upload and /api/BackupV2/download endpoints to read arbitrary files from the underlying filesystem. By specifying an absolute file path in the src parameter of the upload request, the server may relocate or delete the target file depending on the web service user’s privileges. The corresponding download endpoint can then be used to retrieve the file contents, effectively enabling local file disclosure. This behavior stems from insufficient validation of user-supplied paths and inadequate restrictions on file access and backup logic. |
| A path traversal vulnerability exists in WeiPHP 5.0, an open source WeChat public account platform development framework by Shenzhen Yuanmengyun Technology Co., Ltd. The flaw occurs in the picUrl parameter of the /public/index.php/material/Material/_download_imgage endpoint, where insufficient input validation allows unauthenticated remote attackers to perform directory traversal via crafted POST requests. This enables arbitrary file read on the server, potentially exposing sensitive information such as configuration files and source code. Exploitation evidence was observed by the Shadowserver Foundation on 2025-02-05 UTC. |
| A SQL injection vulnerability exists in Fanwei e-cology 8.0 via the getdata.jsp endpoint. The application directly passes unsanitized user input from the sql parameter into a database query within the getSelectAllIds(sql, type) method, reachable through the cmd=getSelectAllId workflow in the AjaxManager. This allows unauthenticated attackers to execute arbitrary SQL queries, potentially exposing sensitive data such as administrator password hashes. Exploitation evidence was observed by the Shadowserver Foundation on 2025-02-05 UTC. |
| An issue was discovered in HTTP2 in Qt before 5.15.18, 6.x before 6.2.13, 6.3.x through 6.5.x before 6.5.7, and 6.6.x through 6.7.x before 6.7.3. Code to make security-relevant decisions about an established connection may execute too early, because the encrypted() signal has not yet been emitted and processed.. |
| Exposure of sensitive information in exceptions in ClichHouse's clickhouse-r2dbc, com.clickhouse:clickhouse-jdbc, and com.clickhouse:clickhouse-client versions less than 0.4.6 allows unauthorized users to gain access to client certificate passwords via client exception logs. This occurs when 'sslkey' is specified and an exception, such as a ClickHouseException or SQLException, is thrown during database operations; the certificate password is then included in the logged exception message. |
| Consensys Discovery versions less than 0.4.5 uses the same AES/GCM nonce for the entire session. which should ideally be unique for every message. The node's private key isn't compromised, only the session key generated for specific peer communication is exposed. |
| Hard-coded credentials in FOLIO mod-data-export-spring versions before 1.5.4 and from 2.0.0 to 2.0.2 allows unauthenticated users to access critical APIs, modify user data, modify configurations including single-sign-on, and manipulate fees/fines. |
| DependencyCheck for Maven 9.0.0 to 9.0.6, for CLI version 9.0.0 to 9.0.5, and for Ant versions 9.0.0 to 9.0.5, when used in debug mode, allows an attacker to recover the NVD API Key from a log file. |
| Hard-coded credentials in mod-remote-storage versions under 1.7.2 and from 2.0.0 to 2.0.3 allows unauthorized users to gain read access to mod-inventory-storage records including instances, holdings, items, contributor-types, and identifier-types. |