Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 7706 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-38562 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: wifi: nl80211: Avoid address calculations via out of bounds array indexing Before request->channels[] can be used, request->n_channels must be set. Additionally, address calculations for memory after the "channels" array need to be calculated from the allocation base ("request") rather than via the first "out of bounds" index of "channels", otherwise run-time bounds checking will throw a warning.
CVE-2024-38561 1 Linux 1 Linux Kernel 2024-11-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: kunit: Fix kthread reference There is a race condition when a kthread finishes after the deadline and before the call to kthread_stop(), which may lead to use after free.
CVE-2024-38557 1 Linux 1 Linux Kernel 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Reload only IB representors upon lag disable/enable On lag disable, the bond IB device along with all of its representors are destroyed, and then the slaves' representors get reloaded. In case the slave IB representor load fails, the eswitch error flow unloads all representors, including ethernet representors, where the netdevs get detached and removed from lag bond. Such flow is inaccurate as the lag driver is not responsible for loading/unloading ethernet representors. Furthermore, the flow described above begins by holding lag lock to prevent bond changes during disable flow. However, when reaching the ethernet representors detachment from lag, the lag lock is required again, triggering the following deadlock: Call trace: __switch_to+0xf4/0x148 __schedule+0x2c8/0x7d0 schedule+0x50/0xe0 schedule_preempt_disabled+0x18/0x28 __mutex_lock.isra.13+0x2b8/0x570 __mutex_lock_slowpath+0x1c/0x28 mutex_lock+0x4c/0x68 mlx5_lag_remove_netdev+0x3c/0x1a0 [mlx5_core] mlx5e_uplink_rep_disable+0x70/0xa0 [mlx5_core] mlx5e_detach_netdev+0x6c/0xb0 [mlx5_core] mlx5e_netdev_change_profile+0x44/0x138 [mlx5_core] mlx5e_netdev_attach_nic_profile+0x28/0x38 [mlx5_core] mlx5e_vport_rep_unload+0x184/0x1b8 [mlx5_core] mlx5_esw_offloads_rep_load+0xd8/0xe0 [mlx5_core] mlx5_eswitch_reload_reps+0x74/0xd0 [mlx5_core] mlx5_disable_lag+0x130/0x138 [mlx5_core] mlx5_lag_disable_change+0x6c/0x70 [mlx5_core] // hold ldev->lock mlx5_devlink_eswitch_mode_set+0xc0/0x410 [mlx5_core] devlink_nl_cmd_eswitch_set_doit+0xdc/0x180 genl_family_rcv_msg_doit.isra.17+0xe8/0x138 genl_rcv_msg+0xe4/0x220 netlink_rcv_skb+0x44/0x108 genl_rcv+0x40/0x58 netlink_unicast+0x198/0x268 netlink_sendmsg+0x1d4/0x418 sock_sendmsg+0x54/0x60 __sys_sendto+0xf4/0x120 __arm64_sys_sendto+0x30/0x40 el0_svc_common+0x8c/0x120 do_el0_svc+0x30/0xa0 el0_svc+0x20/0x30 el0_sync_handler+0x90/0xb8 el0_sync+0x160/0x180 Thus, upon lag enable/disable, load and unload only the IB representors of the slaves preventing the deadlock mentioned above. While at it, refactor the mlx5_esw_offloads_rep_load() function to have a static helper method for its internal logic, in symmetry with the representor unload design.
CVE-2024-38555 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2024-11-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Discard command completions in internal error Fix use after free when FW completion arrives while device is in internal error state. Avoid calling completion handler in this case, since the device will flush the command interface and trigger all completions manually. Kernel log: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. ... RIP: 0010:refcount_warn_saturate+0xd8/0xe0 ... Call Trace: <IRQ> ? __warn+0x79/0x120 ? refcount_warn_saturate+0xd8/0xe0 ? report_bug+0x17c/0x190 ? handle_bug+0x3c/0x60 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? refcount_warn_saturate+0xd8/0xe0 cmd_ent_put+0x13b/0x160 [mlx5_core] mlx5_cmd_comp_handler+0x5f9/0x670 [mlx5_core] cmd_comp_notifier+0x1f/0x30 [mlx5_core] notifier_call_chain+0x35/0xb0 atomic_notifier_call_chain+0x16/0x20 mlx5_eq_async_int+0xf6/0x290 [mlx5_core] notifier_call_chain+0x35/0xb0 atomic_notifier_call_chain+0x16/0x20 irq_int_handler+0x19/0x30 [mlx5_core] __handle_irq_event_percpu+0x4b/0x160 handle_irq_event+0x2e/0x80 handle_edge_irq+0x98/0x230 __common_interrupt+0x3b/0xa0 common_interrupt+0x7b/0xa0 </IRQ> <TASK> asm_common_interrupt+0x22/0x40
CVE-2024-38554 1 Linux 1 Linux Kernel 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ax25: Fix reference count leak issue of net_device There is a reference count leak issue of the object "net_device" in ax25_dev_device_down(). When the ax25 device is shutting down, the ax25_dev_device_down() drops the reference count of net_device one or zero times depending on if we goto unlock_put or not, which will cause memory leak. In order to solve the above issue, decrease the reference count of net_device after dev->ax25_ptr is set to null.
CVE-2024-38553 1 Linux 1 Linux Kernel 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fec: remove .ndo_poll_controller to avoid deadlocks There is a deadlock issue found in sungem driver, please refer to the commit ac0a230f719b ("eth: sungem: remove .ndo_poll_controller to avoid deadlocks"). The root cause of the issue is that netpoll is in atomic context and disable_irq() is called by .ndo_poll_controller interface of sungem driver, however, disable_irq() might sleep. After analyzing the implementation of fec_poll_controller(), the fec driver should have the same issue. Due to the fec driver uses NAPI for TX completions, the .ndo_poll_controller is unnecessary to be implemented in the fec driver, so fec_poll_controller() can be safely removed.
CVE-2024-38552 1 Linux 1 Linux Kernel 2024-11-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix potential index out of bounds in color transformation function Fixes index out of bounds issue in the color transformation function. The issue could occur when the index 'i' exceeds the number of transfer function points (TRANSFER_FUNC_POINTS). The fix adds a check to ensure 'i' is within bounds before accessing the transfer function points. If 'i' is out of bounds, an error message is logged and the function returns false to indicate an error. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:405 cm_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.red' 1025 <= s32max drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:406 cm_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.green' 1025 <= s32max drivers/gpu/drm/amd/amdgpu/../display/dc/dcn10/dcn10_cm_common.c:407 cm_helper_translate_curve_to_hw_format() error: buffer overflow 'output_tf->tf_pts.blue' 1025 <= s32max
CVE-2024-38551 1 Linux 1 Linux Kernel 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: mediatek: Assign dummy when codec not specified for a DAI link MediaTek sound card drivers are checking whether a DAI link is present and used on a board to assign the correct parameters and this is done by checking the codec DAI names at probe time. If no real codec is present, assign the dummy codec to the DAI link to avoid NULL pointer during string comparison.
CVE-2024-38549 1 Linux 1 Linux Kernel 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Add 0 size check to mtk_drm_gem_obj Add a check to mtk_drm_gem_init if we attempt to allocate a GEM object of 0 bytes. Currently, no such check exists and the kernel will panic if a userspace application attempts to allocate a 0x0 GBM buffer. Tested by attempting to allocate a 0x0 GBM buffer on an MT8188 and verifying that we now return EINVAL.
CVE-2024-38547 1 Linux 1 Linux Kernel 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: atomisp: ssh_css: Fix a null-pointer dereference in load_video_binaries The allocation failure of mycs->yuv_scaler_binary in load_video_binaries() is followed with a dereference of mycs->yuv_scaler_binary after the following call chain: sh_css_pipe_load_binaries() |-> load_video_binaries(mycs->yuv_scaler_binary == NULL) | |-> sh_css_pipe_unload_binaries() |-> unload_video_binaries() In unload_video_binaries(), it calls to ia_css_binary_unload with argument &pipe->pipe_settings.video.yuv_scaler_binary[i], which refers to the same memory slot as mycs->yuv_scaler_binary. Thus, a null-pointer dereference is triggered.
CVE-2024-38546 1 Linux 1 Linux Kernel 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm: vc4: Fix possible null pointer dereference In vc4_hdmi_audio_init() of_get_address() may return NULL which is later dereferenced. Fix this bug by adding NULL check. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2024-38545 1 Linux 1 Linux Kernel 2024-11-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix UAF for cq async event The refcount of CQ is not protected by locks. When CQ asynchronous events and CQ destruction are concurrent, CQ may have been released, which will cause UAF. Use the xa_lock() to protect the CQ refcount.
CVE-2024-38543 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: lib/test_hmm.c: handle src_pfns and dst_pfns allocation failure The kcalloc() in dmirror_device_evict_chunk() will return null if the physical memory has run out. As a result, if src_pfns or dst_pfns is dereferenced, the null pointer dereference bug will happen. Moreover, the device is going away. If the kcalloc() fails, the pages mapping a chunk could not be evicted. So add a __GFP_NOFAIL flag in kcalloc(). Finally, as there is no need to have physically contiguous memory, Switch kcalloc() to kvcalloc() in order to avoid failing allocations.
CVE-2024-38541 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-05 9.8 Critical
In the Linux kernel, the following vulnerability has been resolved: of: module: add buffer overflow check in of_modalias() In of_modalias(), if the buffer happens to be too small even for the 1st snprintf() call, the len parameter will become negative and str parameter (if not NULL initially) will point beyond the buffer's end. Add the buffer overflow check after the 1st snprintf() call and fix such check after the strlen() call (accounting for the terminating NUL char).
CVE-2024-38539 1 Linux 1 Linux Kernel 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/cma: Fix kmemleak in rdma_core observed during blktests nvme/rdma use siw When running blktests nvme/rdma, the following kmemleak issue will appear. kmemleak: Kernel memory leak detector initialized (mempool available:36041) kmemleak: Automatic memory scanning thread started kmemleak: 2 new suspected memory leaks (see /sys/kernel/debug/kmemleak) kmemleak: 8 new suspected memory leaks (see /sys/kernel/debug/kmemleak) kmemleak: 17 new suspected memory leaks (see /sys/kernel/debug/kmemleak) kmemleak: 4 new suspected memory leaks (see /sys/kernel/debug/kmemleak) unreferenced object 0xffff88855da53400 (size 192): comm "rdma", pid 10630, jiffies 4296575922 hex dump (first 32 bytes): 37 00 00 00 00 00 00 00 c0 ff ff ff 1f 00 00 00 7............... 10 34 a5 5d 85 88 ff ff 10 34 a5 5d 85 88 ff ff .4.].....4.].... backtrace (crc 47f66721): [<ffffffff911251bd>] kmalloc_trace+0x30d/0x3b0 [<ffffffffc2640ff7>] alloc_gid_entry+0x47/0x380 [ib_core] [<ffffffffc2642206>] add_modify_gid+0x166/0x930 [ib_core] [<ffffffffc2643468>] ib_cache_update.part.0+0x6d8/0x910 [ib_core] [<ffffffffc2644e1a>] ib_cache_setup_one+0x24a/0x350 [ib_core] [<ffffffffc263949e>] ib_register_device+0x9e/0x3a0 [ib_core] [<ffffffffc2a3d389>] 0xffffffffc2a3d389 [<ffffffffc2688cd8>] nldev_newlink+0x2b8/0x520 [ib_core] [<ffffffffc2645fe3>] rdma_nl_rcv_msg+0x2c3/0x520 [ib_core] [<ffffffffc264648c>] rdma_nl_rcv_skb.constprop.0.isra.0+0x23c/0x3a0 [ib_core] [<ffffffff9270e7b5>] netlink_unicast+0x445/0x710 [<ffffffff9270f1f1>] netlink_sendmsg+0x761/0xc40 [<ffffffff9249db29>] __sys_sendto+0x3a9/0x420 [<ffffffff9249dc8c>] __x64_sys_sendto+0xdc/0x1b0 [<ffffffff92db0ad3>] do_syscall_64+0x93/0x180 [<ffffffff92e00126>] entry_SYSCALL_64_after_hwframe+0x71/0x79 The root cause: rdma_put_gid_attr is not called when sgid_attr is set to ERR_PTR(-ENODEV).
CVE-2024-38390 1 Linux 1 Linux Kernel 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm/a6xx: Avoid a nullptr dereference when speedbin setting fails Calling a6xx_destroy() before adreno_gpu_init() leads to a null pointer dereference on: msm_gpu_cleanup() : platform_set_drvdata(gpu->pdev, NULL); as gpu->pdev is only assigned in: a6xx_gpu_init() |_ adreno_gpu_init |_ msm_gpu_init() Instead of relying on handwavy null checks down the cleanup chain, explicitly de-allocate the LLC data and free a6xx_gpu instead. Patchwork: https://patchwork.freedesktop.org/patch/588919/
CVE-2024-38385 1 Linux 1 Linux Kernel 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: genirq/irqdesc: Prevent use-after-free in irq_find_at_or_after() irq_find_at_or_after() dereferences the interrupt descriptor which is returned by mt_find() while neither holding sparse_irq_lock nor RCU read lock, which means the descriptor can be freed between mt_find() and the dereference: CPU0 CPU1 desc = mt_find() delayed_free_desc(desc) irq_desc_get_irq(desc) The use-after-free is reported by KASAN: Call trace: irq_get_next_irq+0x58/0x84 show_stat+0x638/0x824 seq_read_iter+0x158/0x4ec proc_reg_read_iter+0x94/0x12c vfs_read+0x1e0/0x2c8 Freed by task 4471: slab_free_freelist_hook+0x174/0x1e0 __kmem_cache_free+0xa4/0x1dc kfree+0x64/0x128 irq_kobj_release+0x28/0x3c kobject_put+0xcc/0x1e0 delayed_free_desc+0x14/0x2c rcu_do_batch+0x214/0x720 Guard the access with a RCU read lock section.
CVE-2024-38384 2 Linux, Redhat 2 Linux Kernel, Rhel Eus 2024-11-05 8.4 High
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: fix list corruption from reorder of WRITE ->lqueued __blkcg_rstat_flush() can be run anytime, especially when blk_cgroup_bio_start is being executed. If WRITE of `->lqueued` is re-ordered with READ of 'bisc->lnode.next' in the loop of __blkcg_rstat_flush(), `next_bisc` can be assigned with one stat instance being added in blk_cgroup_bio_start(), then the local list in __blkcg_rstat_flush() could be corrupted. Fix the issue by adding one barrier.
CVE-2024-38381 1 Linux 1 Linux Kernel 2024-11-05 7.1 High
In the Linux kernel, the following vulnerability has been resolved: nfc: nci: Fix uninit-value in nci_rx_work syzbot reported the following uninit-value access issue [1] nci_rx_work() parses received packet from ndev->rx_q. It should be validated header size, payload size and total packet size before processing the packet. If an invalid packet is detected, it should be silently discarded.
CVE-2024-36979 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2024-11-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net: bridge: mst: fix vlan use-after-free syzbot reported a suspicious rcu usage[1] in bridge's mst code. While fixing it I noticed that nothing prevents a vlan to be freed while walking the list from the same path (br forward delay timer). Fix the rcu usage and also make sure we are not accessing freed memory by making br_mst_vlan_set_state use rcu read lock. [1] WARNING: suspicious RCU usage 6.9.0-rc6-syzkaller #0 Not tainted ----------------------------- net/bridge/br_private.h:1599 suspicious rcu_dereference_protected() usage! ... stack backtrace: CPU: 1 PID: 8017 Comm: syz-executor.1 Not tainted 6.9.0-rc6-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 lockdep_rcu_suspicious+0x221/0x340 kernel/locking/lockdep.c:6712 nbp_vlan_group net/bridge/br_private.h:1599 [inline] br_mst_set_state+0x1ea/0x650 net/bridge/br_mst.c:105 br_set_state+0x28a/0x7b0 net/bridge/br_stp.c:47 br_forward_delay_timer_expired+0x176/0x440 net/bridge/br_stp_timer.c:88 call_timer_fn+0x18e/0x650 kernel/time/timer.c:1793 expire_timers kernel/time/timer.c:1844 [inline] __run_timers kernel/time/timer.c:2418 [inline] __run_timer_base+0x66a/0x8e0 kernel/time/timer.c:2429 run_timer_base kernel/time/timer.c:2438 [inline] run_timer_softirq+0xb7/0x170 kernel/time/timer.c:2448 __do_softirq+0x2c6/0x980 kernel/softirq.c:554 invoke_softirq kernel/softirq.c:428 [inline] __irq_exit_rcu+0xf2/0x1c0 kernel/softirq.c:633 irq_exit_rcu+0x9/0x30 kernel/softirq.c:645 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1043 [inline] sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1043 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702 RIP: 0010:lock_acquire+0x264/0x550 kernel/locking/lockdep.c:5758 Code: 2b 00 74 08 4c 89 f7 e8 ba d1 84 00 f6 44 24 61 02 0f 85 85 01 00 00 41 f7 c7 00 02 00 00 74 01 fb 48 c7 44 24 40 0e 36 e0 45 <4b> c7 44 25 00 00 00 00 00 43 c7 44 25 09 00 00 00 00 43 c7 44 25 RSP: 0018:ffffc90013657100 EFLAGS: 00000206 RAX: 0000000000000001 RBX: 1ffff920026cae2c RCX: 0000000000000001 RDX: dffffc0000000000 RSI: ffffffff8bcaca00 RDI: ffffffff8c1eaa60 RBP: ffffc90013657260 R08: ffffffff92efe507 R09: 1ffffffff25dfca0 R10: dffffc0000000000 R11: fffffbfff25dfca1 R12: 1ffff920026cae28 R13: dffffc0000000000 R14: ffffc90013657160 R15: 0000000000000246