CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
NVIDIA NeMo Framework for all platforms contains a vulnerability in the export and deploy component, where malicious data created by an attacker could cause a code injection issue. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering. |
In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: fix uninitialised kfifo
If a line is requested with debounce, and that results in debouncing
in software, and the line is subsequently reconfigured to enable edge
detection then the allocation of the kfifo to contain edge events is
overlooked. This results in events being written to and read from an
uninitialised kfifo. Read events are returned to userspace.
Initialise the kfifo in the case where the software debounce is
already active. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: uvc: use correct buffer size when parsing configfs lists
This commit fixes uvc gadget support on 32-bit platforms.
Commit 0df28607c5cb ("usb: gadget: uvc: Generalise helper functions for
reuse") introduced a helper function __uvcg_iter_item_entries() to aid
with parsing lists of items on configfs attributes stores. This function
is a generalization of another very similar function, which used a
stack-allocated temporary buffer of fixed size for each item in the list
and used the sizeof() operator to check for potential buffer overruns.
The new function was changed to allocate the now variably sized temp
buffer on heap, but wasn't properly updated to also check for max buffer
size using the computed size instead of sizeof() operator.
As a result, the maximum item size was 7 (plus null terminator) on
64-bit platforms, and 3 on 32-bit ones. While 7 is accidentally just
barely enough, 3 is definitely too small for some of UVC configfs
attributes. For example, dwFrameInteval, specified in 100ns units,
usually has 6-digit item values, e.g. 166666 for 60fps. |
In the Linux kernel, the following vulnerability has been resolved:
mm/slub: avoid zeroing outside-object freepointer for single free
Commit 284f17ac13fe ("mm/slub: handle bulk and single object freeing
separately") splits single and bulk object freeing in two functions
slab_free() and slab_free_bulk() which leads slab_free() to call
slab_free_hook() directly instead of slab_free_freelist_hook().
If `init_on_free` is set, slab_free_hook() zeroes the object.
Afterward, if `slub_debug=F` and `CONFIG_SLAB_FREELIST_HARDENED` are
set, the do_slab_free() slowpath executes freelist consistency
checks and try to decode a zeroed freepointer which leads to a
"Freepointer corrupt" detection in check_object().
During bulk free, slab_free_freelist_hook() isn't affected as it always
sets it objects freepointer using set_freepointer() to maintain its
reconstructed freelist after `init_on_free`.
For single free, object's freepointer thus needs to be avoided when
stored outside the object if `init_on_free` is set. The freepointer left
as is, check_object() may later detect an invalid pointer value due to
objects overflow.
To reproduce, set `slub_debug=FU init_on_free=1 log_level=7` on the
command line of a kernel build with `CONFIG_SLAB_FREELIST_HARDENED=y`.
dmesg sample log:
[ 10.708715] =============================================================================
[ 10.710323] BUG kmalloc-rnd-05-32 (Tainted: G B T ): Freepointer corrupt
[ 10.712695] -----------------------------------------------------------------------------
[ 10.712695]
[ 10.712695] Slab 0xffffd8bdc400d580 objects=32 used=4 fp=0xffff9d9a80356f80 flags=0x200000000000a00(workingset|slab|node=0|zone=2)
[ 10.716698] Object 0xffff9d9a80356600 @offset=1536 fp=0x7ee4f480ce0ecd7c
[ 10.716698]
[ 10.716698] Bytes b4 ffff9d9a803565f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.720703] Object ffff9d9a80356600: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.720703] Object ffff9d9a80356610: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.724696] Padding ffff9d9a8035666c: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.724696] Padding ffff9d9a8035667c: 00 00 00 00 ....
[ 10.724696] FIX kmalloc-rnd-05-32: Object at 0xffff9d9a80356600 not freed |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix to guarantee persisting compressed blocks by CP
If data block in compressed cluster is not persisted with metadata
during checkpoint, after SPOR, the data may be corrupted, let's
guarantee to write compressed page by checkpoint. |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix to cover normal cluster write with cp_rwsem
When we overwrite compressed cluster w/ normal cluster, we should
not unlock cp_rwsem during f2fs_write_raw_pages(), otherwise data
will be corrupted if partial blocks were persisted before CP & SPOR,
due to cluster metadata wasn't updated atomically. |
In the Linux kernel, the following vulnerability has been resolved:
dpll: fix dpll_xa_ref_*_del() for multiple registrations
Currently, if there are multiple registrations of the same pin on the
same dpll device, following warnings are observed:
WARNING: CPU: 5 PID: 2212 at drivers/dpll/dpll_core.c:143 dpll_xa_ref_pin_del.isra.0+0x21e/0x230
WARNING: CPU: 5 PID: 2212 at drivers/dpll/dpll_core.c:223 __dpll_pin_unregister+0x2b3/0x2c0
The problem is, that in both dpll_xa_ref_dpll_del() and
dpll_xa_ref_pin_del() registration is only removed from list in case the
reference count drops to zero. That is wrong, the registration has to
be removed always.
To fix this, remove the registration from the list and free
it unconditionally, instead of doing it only when the ref reference
counter reaches zero. |
In the Linux kernel, the following vulnerability has been resolved:
NTB: fix possible name leak in ntb_register_device()
If device_register() fails in ntb_register_device(), the device name
allocated by dev_set_name() should be freed. As per the comment in
device_register(), callers should use put_device() to give up the
reference in the error path. So fix this by calling put_device() in the
error path so that the name can be freed in kobject_cleanup().
As a result of this, put_device() in the error path of
ntb_register_device() is removed and the actual error is returned.
[mani: reworded commit message] |
In the Linux kernel, the following vulnerability has been resolved:
mm/slab: make __free(kfree) accept error pointers
Currently, if an automatically freed allocation is an error pointer that
will lead to a crash. An example of this is in wm831x_gpio_dbg_show().
171 char *label __free(kfree) = gpiochip_dup_line_label(chip, i);
172 if (IS_ERR(label)) {
173 dev_err(wm831x->dev, "Failed to duplicate label\n");
174 continue;
175 }
The auto clean up function should check for error pointers as well,
otherwise we're going to keep hitting issues like this. |
In the Linux kernel, the following vulnerability has been resolved:
md: Fix missing release of 'active_io' for flush
submit_flushes
atomic_set(&mddev->flush_pending, 1);
rdev_for_each_rcu(rdev, mddev)
atomic_inc(&mddev->flush_pending);
bi->bi_end_io = md_end_flush
submit_bio(bi);
/* flush io is done first */
md_end_flush
if (atomic_dec_and_test(&mddev->flush_pending))
percpu_ref_put(&mddev->active_io)
-> active_io is not released
if (atomic_dec_and_test(&mddev->flush_pending))
-> missing release of active_io
For consequence, mddev_suspend() will wait for 'active_io' to be zero
forever.
Fix this problem by releasing 'active_io' in submit_flushes() if
'flush_pending' is decreased to zero. |
In the Linux kernel, the following vulnerability has been resolved:
e1000e: change usleep_range to udelay in PHY mdic access
This is a partial revert of commit 6dbdd4de0362 ("e1000e: Workaround
for sporadic MDI error on Meteor Lake systems"). The referenced commit
used usleep_range inside the PHY access routines, which are sometimes
called from an atomic context. This can lead to a kernel panic in some
scenarios, such as cable disconnection and reconnection on vPro systems.
Solve this by changing the usleep_range calls back to udelay. |
In the Linux kernel, the following vulnerability has been resolved:
pci_iounmap(): Fix MMIO mapping leak
The #ifdef ARCH_HAS_GENERIC_IOPORT_MAP accidentally also guards iounmap(),
which means MMIO mappings are leaked.
Move the guard so we call iounmap() for MMIO mappings. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: qca: fix info leak when fetching board id
Add the missing sanity check when fetching the board id to avoid leaking
slab data when later requesting the firmware. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix bo leak in intel_fb_bo_framebuffer_init
Add a unreference bo in the error path, to prevent leaking a bo ref.
Return 0 on success to clarify the success path.
(cherry picked from commit a2f3d731be3893e730417ae3190760fcaffdf549) |
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/mmu: Write-protect L2 SPTEs in TDP MMU when clearing dirty status
Check kvm_mmu_page_ad_need_write_protect() when deciding whether to
write-protect or clear D-bits on TDP MMU SPTEs, so that the TDP MMU
accounts for any role-specific reasons for disabling D-bit dirty logging.
Specifically, TDP MMU SPTEs must be write-protected when the TDP MMU is
being used to run an L2 (i.e. L1 has disabled EPT) and PML is enabled.
KVM always disables PML when running L2, even when L1 and L2 GPAs are in
the some domain, so failing to write-protect TDP MMU SPTEs will cause
writes made by L2 to not be reflected in the dirty log.
[sean: massage shortlog and changelog, tweak ternary op formatting] |
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/pmu: Disable support for adaptive PEBS
Drop support for virtualizing adaptive PEBS, as KVM's implementation is
architecturally broken without an obvious/easy path forward, and because
exposing adaptive PEBS can leak host LBRs to the guest, i.e. can leak
host kernel addresses to the guest.
Bug #1 is that KVM doesn't account for the upper 32 bits of
IA32_FIXED_CTR_CTRL when (re)programming fixed counters, e.g
fixed_ctrl_field() drops the upper bits, reprogram_fixed_counters()
stores local variables as u8s and truncates the upper bits too, etc.
Bug #2 is that, because KVM _always_ sets precise_ip to a non-zero value
for PEBS events, perf will _always_ generate an adaptive record, even if
the guest requested a basic record. Note, KVM will also enable adaptive
PEBS in individual *counter*, even if adaptive PEBS isn't exposed to the
guest, but this is benign as MSR_PEBS_DATA_CFG is guaranteed to be zero,
i.e. the guest will only ever see Basic records.
Bug #3 is in perf. intel_pmu_disable_fixed() doesn't clear the upper
bits either, i.e. leaves ICL_FIXED_0_ADAPTIVE set, and
intel_pmu_enable_fixed() effectively doesn't clear ICL_FIXED_0_ADAPTIVE
either. I.e. perf _always_ enables ADAPTIVE counters, regardless of what
KVM requests.
Bug #4 is that adaptive PEBS *might* effectively bypass event filters set
by the host, as "Updated Memory Access Info Group" records information
that might be disallowed by userspace via KVM_SET_PMU_EVENT_FILTER.
Bug #5 is that KVM doesn't ensure LBR MSRs hold guest values (or at least
zeros) when entering a vCPU with adaptive PEBS, which allows the guest
to read host LBRs, i.e. host RIPs/addresses, by enabling "LBR Entries"
records.
Disable adaptive PEBS support as an immediate fix due to the severity of
the LBR leak in particular, and because fixing all of the bugs will be
non-trivial, e.g. not suitable for backporting to stable kernels.
Note! This will break live migration, but trying to make KVM play nice
with live migration would be quite complicated, wouldn't be guaranteed to
work (i.e. KVM might still kill/confuse the guest), and it's not clear
that there are any publicly available VMMs that support adaptive PEBS,
let alone live migrate VMs that support adaptive PEBS, e.g. QEMU doesn't
support PEBS in any capacity. |
In the Linux kernel, the following vulnerability has been resolved:
thermal/debugfs: Add missing count increment to thermal_debug_tz_trip_up()
The count field in struct trip_stats, representing the number of times
the zone temperature was above the trip point, needs to be incremented
in thermal_debug_tz_trip_up(), for two reasons.
First, if a trip point is crossed on the way up for the first time,
thermal_debug_update_temp() called from update_temperature() does
not see it because it has not been added to trips_crossed[] array
in the thermal zone's struct tz_debugfs object yet. Therefore, when
thermal_debug_tz_trip_up() is called after that, the trip point's
count value is 0, and the attempt to divide by it during the average
temperature computation leads to a divide error which causes the kernel
to crash. Setting the count to 1 before the division by incrementing it
fixes this problem.
Second, if a trip point is crossed on the way up, but it has been
crossed on the way up already before, its count value needs to be
incremented to make a record of the fact that the zone temperature is
above the trip now. Without doing that, if the mitigations applied
after crossing the trip cause the zone temperature to drop below its
threshold, the count will not be updated for this episode at all and
the average temperature in the trip statistics record will be somewhat
higher than it should be.
Cc :6.8+ <stable@vger.kernel.org> # 6.8+ |
In the Linux kernel, the following vulnerability has been resolved:
userfaultfd: change src_folio after ensuring it's unpinned in UFFDIO_MOVE
Commit d7a08838ab74 ("mm: userfaultfd: fix unexpected change to src_folio
when UFFDIO_MOVE fails") moved the src_folio->{mapping, index} changing to
after clearing the page-table and ensuring that it's not pinned. This
avoids failure of swapout+migration and possibly memory corruption.
However, the commit missed fixing it in the huge-page case. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: qca: fix info leak when fetching fw build id
Add the missing sanity checks and move the 255-byte build-id buffer off
the stack to avoid leaking stack data through debugfs in case the
build-info reply is malformed. |
In the Linux kernel, the following vulnerability has been resolved:
s390/cio: fix race condition during online processing
A race condition exists in ccw_device_set_online() that can cause the
online process to fail, leaving the affected device in an inconsistent
state. As a result, subsequent attempts to set that device online fail
with return code ENODEV.
The problem occurs when a path verification request arrives after
a wait for final device state completed, but before the result state
is evaluated.
Fix this by ensuring that the CCW-device lock is held between
determining final state and checking result state.
Note that since:
commit 2297791c92d0 ("s390/cio: dont unregister subchannel from child-drivers")
path verification requests are much more likely to occur during boot,
resulting in an increased chance of this race condition occurring. |