CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: x86-android-tablets: Fix use after free on platform_device_register() errors
x86_android_tablet_remove() frees the pdevs[] array, so it should not
be used after calling x86_android_tablet_remove().
When platform_device_register() fails, store the pdevs[x] PTR_ERR() value
into the local ret variable before calling x86_android_tablet_remove()
to avoid using pdevs[] after it has been freed. |
In the Linux kernel, the following vulnerability has been resolved:
media: venus: fix use after free bug in venus_remove due to race condition
in venus_probe, core->work is bound with venus_sys_error_handler, which is
used to handle error. The code use core->sys_err_done to make sync work.
The core->work is started in venus_event_notify.
If we call venus_remove, there might be an unfished work. The possible
sequence is as follows:
CPU0 CPU1
|venus_sys_error_handler
venus_remove |
hfi_destroy |
venus_hfi_destroy |
kfree(hdev); |
|hfi_reinit
|venus_hfi_queues_reinit
|//use hdev
Fix it by canceling the work in venus_remove. |
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: cancel dqi_sync_work before freeing oinfo
ocfs2_global_read_info() will initialize and schedule dqi_sync_work at the
end, if error occurs after successfully reading global quota, it will
trigger the following warning with CONFIG_DEBUG_OBJECTS_* enabled:
ODEBUG: free active (active state 0) object: 00000000d8b0ce28 object type: timer_list hint: qsync_work_fn+0x0/0x16c
This reports that there is an active delayed work when freeing oinfo in
error handling, so cancel dqi_sync_work first. BTW, return status instead
of -1 when .read_file_info fails. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix possible crash on mgmt_index_removed
If mgmt_index_removed is called while there are commands queued on
cmd_sync it could lead to crashes like the bellow trace:
0x0000053D: __list_del_entry_valid_or_report+0x98/0xdc
0x0000053D: mgmt_pending_remove+0x18/0x58 [bluetooth]
0x0000053E: mgmt_remove_adv_monitor_complete+0x80/0x108 [bluetooth]
0x0000053E: hci_cmd_sync_work+0xbc/0x164 [bluetooth]
So while handling mgmt_index_removed this attempts to dequeue
commands passed as user_data to cmd_sync. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix uaf in l2cap_connect
[Syzbot reported]
BUG: KASAN: slab-use-after-free in l2cap_connect.constprop.0+0x10d8/0x1270 net/bluetooth/l2cap_core.c:3949
Read of size 8 at addr ffff8880241e9800 by task kworker/u9:0/54
CPU: 0 UID: 0 PID: 54 Comm: kworker/u9:0 Not tainted 6.11.0-rc6-syzkaller-00268-g788220eee30d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024
Workqueue: hci2 hci_rx_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:93 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:119
print_address_description mm/kasan/report.c:377 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:488
kasan_report+0xd9/0x110 mm/kasan/report.c:601
l2cap_connect.constprop.0+0x10d8/0x1270 net/bluetooth/l2cap_core.c:3949
l2cap_connect_req net/bluetooth/l2cap_core.c:4080 [inline]
l2cap_bredr_sig_cmd net/bluetooth/l2cap_core.c:4772 [inline]
l2cap_sig_channel net/bluetooth/l2cap_core.c:5543 [inline]
l2cap_recv_frame+0xf0b/0x8eb0 net/bluetooth/l2cap_core.c:6825
l2cap_recv_acldata+0x9b4/0xb70 net/bluetooth/l2cap_core.c:7514
hci_acldata_packet net/bluetooth/hci_core.c:3791 [inline]
hci_rx_work+0xaab/0x1610 net/bluetooth/hci_core.c:4028
process_one_work+0x9c5/0x1b40 kernel/workqueue.c:3231
process_scheduled_works kernel/workqueue.c:3312 [inline]
worker_thread+0x6c8/0xed0 kernel/workqueue.c:3389
kthread+0x2c1/0x3a0 kernel/kthread.c:389
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
...
Freed by task 5245:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:579
poison_slab_object+0xf7/0x160 mm/kasan/common.c:240
__kasan_slab_free+0x32/0x50 mm/kasan/common.c:256
kasan_slab_free include/linux/kasan.h:184 [inline]
slab_free_hook mm/slub.c:2256 [inline]
slab_free mm/slub.c:4477 [inline]
kfree+0x12a/0x3b0 mm/slub.c:4598
l2cap_conn_free net/bluetooth/l2cap_core.c:1810 [inline]
kref_put include/linux/kref.h:65 [inline]
l2cap_conn_put net/bluetooth/l2cap_core.c:1822 [inline]
l2cap_conn_del+0x59d/0x730 net/bluetooth/l2cap_core.c:1802
l2cap_connect_cfm+0x9e6/0xf80 net/bluetooth/l2cap_core.c:7241
hci_connect_cfm include/net/bluetooth/hci_core.h:1960 [inline]
hci_conn_failed+0x1c3/0x370 net/bluetooth/hci_conn.c:1265
hci_abort_conn_sync+0x75a/0xb50 net/bluetooth/hci_sync.c:5583
abort_conn_sync+0x197/0x360 net/bluetooth/hci_conn.c:2917
hci_cmd_sync_work+0x1a4/0x410 net/bluetooth/hci_sync.c:328
process_one_work+0x9c5/0x1b40 kernel/workqueue.c:3231
process_scheduled_works kernel/workqueue.c:3312 [inline]
worker_thread+0x6c8/0xed0 kernel/workqueue.c:3389
kthread+0x2c1/0x3a0 kernel/kthread.c:389
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 |
In the Linux kernel, the following vulnerability has been resolved:
net/ncsi: Disable the ncsi work before freeing the associated structure
The work function can run after the ncsi device is freed, resulting
in use-after-free bugs or kernel panic. |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: pxafb: Fix possible use after free in pxafb_task()
In the pxafb_probe function, it calls the pxafb_init_fbinfo function,
after which &fbi->task is associated with pxafb_task. Moreover,
within this pxafb_init_fbinfo function, the pxafb_blank function
within the &pxafb_ops struct is capable of scheduling work.
If we remove the module which will call pxafb_remove to make cleanup,
it will call unregister_framebuffer function which can call
do_unregister_framebuffer to free fbi->fb through
put_fb_info(fb_info), while the work mentioned above will be used.
The sequence of operations that may lead to a UAF bug is as follows:
CPU0 CPU1
| pxafb_task
pxafb_remove |
unregister_framebuffer(info) |
do_unregister_framebuffer(fb_info) |
put_fb_info(fb_info) |
// free fbi->fb | set_ctrlr_state(fbi, state)
| __pxafb_lcd_power(fbi, 0)
| fbi->lcd_power(on, &fbi->fb.var)
| //use fbi->fb
Fix it by ensuring that the work is canceled before proceeding
with the cleanup in pxafb_remove.
Note that only root user can remove the driver at runtime. |
In the Linux kernel, the following vulnerability has been resolved:
jfs: Fix uaf in dbFreeBits
[syzbot reported]
==================================================================
BUG: KASAN: slab-use-after-free in __mutex_lock_common kernel/locking/mutex.c:587 [inline]
BUG: KASAN: slab-use-after-free in __mutex_lock+0xfe/0xd70 kernel/locking/mutex.c:752
Read of size 8 at addr ffff8880229254b0 by task syz-executor357/5216
CPU: 0 UID: 0 PID: 5216 Comm: syz-executor357 Not tainted 6.11.0-rc3-syzkaller-00156-gd7a5aa4b3c00 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/27/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:93 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:119
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
__mutex_lock_common kernel/locking/mutex.c:587 [inline]
__mutex_lock+0xfe/0xd70 kernel/locking/mutex.c:752
dbFreeBits+0x7ea/0xd90 fs/jfs/jfs_dmap.c:2390
dbFreeDmap fs/jfs/jfs_dmap.c:2089 [inline]
dbFree+0x35b/0x680 fs/jfs/jfs_dmap.c:409
dbDiscardAG+0x8a9/0xa20 fs/jfs/jfs_dmap.c:1650
jfs_ioc_trim+0x433/0x670 fs/jfs/jfs_discard.c:100
jfs_ioctl+0x2d0/0x3e0 fs/jfs/ioctl.c:131
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
Freed by task 5218:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:579
poison_slab_object+0xe0/0x150 mm/kasan/common.c:240
__kasan_slab_free+0x37/0x60 mm/kasan/common.c:256
kasan_slab_free include/linux/kasan.h:184 [inline]
slab_free_hook mm/slub.c:2252 [inline]
slab_free mm/slub.c:4473 [inline]
kfree+0x149/0x360 mm/slub.c:4594
dbUnmount+0x11d/0x190 fs/jfs/jfs_dmap.c:278
jfs_mount_rw+0x4ac/0x6a0 fs/jfs/jfs_mount.c:247
jfs_remount+0x3d1/0x6b0 fs/jfs/super.c:454
reconfigure_super+0x445/0x880 fs/super.c:1083
vfs_cmd_reconfigure fs/fsopen.c:263 [inline]
vfs_fsconfig_locked fs/fsopen.c:292 [inline]
__do_sys_fsconfig fs/fsopen.c:473 [inline]
__se_sys_fsconfig+0xb6e/0xf80 fs/fsopen.c:345
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[Analysis]
There are two paths (dbUnmount and jfs_ioc_trim) that generate race
condition when accessing bmap, which leads to the occurrence of uaf.
Use the lock s_umount to synchronize them, in order to avoid uaf caused
by race condition. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid use-after-free in ext4_ext_show_leaf()
In ext4_find_extent(), path may be freed by error or be reallocated, so
using a previously saved *ppath may have been freed and thus may trigger
use-after-free, as follows:
ext4_split_extent
path = *ppath;
ext4_split_extent_at(ppath)
path = ext4_find_extent(ppath)
ext4_split_extent_at(ppath)
// ext4_find_extent fails to free path
// but zeroout succeeds
ext4_ext_show_leaf(inode, path)
eh = path[depth].p_hdr
// path use-after-free !!!
Similar to ext4_split_extent_at(), we use *ppath directly as an input to
ext4_ext_show_leaf(). Fix a spelling error by the way.
Same problem in ext4_ext_handle_unwritten_extents(). Since 'path' is only
used in ext4_ext_show_leaf(), remove 'path' and use *ppath directly.
This issue is triggered only when EXT_DEBUG is defined and therefore does
not affect functionality. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix slab-use-after-free in ext4_split_extent_at()
We hit the following use-after-free:
==================================================================
BUG: KASAN: slab-use-after-free in ext4_split_extent_at+0xba8/0xcc0
Read of size 2 at addr ffff88810548ed08 by task kworker/u20:0/40
CPU: 0 PID: 40 Comm: kworker/u20:0 Not tainted 6.9.0-dirty #724
Call Trace:
<TASK>
kasan_report+0x93/0xc0
ext4_split_extent_at+0xba8/0xcc0
ext4_split_extent.isra.0+0x18f/0x500
ext4_split_convert_extents+0x275/0x750
ext4_ext_handle_unwritten_extents+0x73e/0x1580
ext4_ext_map_blocks+0xe20/0x2dc0
ext4_map_blocks+0x724/0x1700
ext4_do_writepages+0x12d6/0x2a70
[...]
Allocated by task 40:
__kmalloc_noprof+0x1ac/0x480
ext4_find_extent+0xf3b/0x1e70
ext4_ext_map_blocks+0x188/0x2dc0
ext4_map_blocks+0x724/0x1700
ext4_do_writepages+0x12d6/0x2a70
[...]
Freed by task 40:
kfree+0xf1/0x2b0
ext4_find_extent+0xa71/0x1e70
ext4_ext_insert_extent+0xa22/0x3260
ext4_split_extent_at+0x3ef/0xcc0
ext4_split_extent.isra.0+0x18f/0x500
ext4_split_convert_extents+0x275/0x750
ext4_ext_handle_unwritten_extents+0x73e/0x1580
ext4_ext_map_blocks+0xe20/0x2dc0
ext4_map_blocks+0x724/0x1700
ext4_do_writepages+0x12d6/0x2a70
[...]
==================================================================
The flow of issue triggering is as follows:
ext4_split_extent_at
path = *ppath
ext4_ext_insert_extent(ppath)
ext4_ext_create_new_leaf(ppath)
ext4_find_extent(orig_path)
path = *orig_path
read_extent_tree_block
// return -ENOMEM or -EIO
ext4_free_ext_path(path)
kfree(path)
*orig_path = NULL
a. If err is -ENOMEM:
ext4_ext_dirty(path + path->p_depth)
// path use-after-free !!!
b. If err is -EIO and we have EXT_DEBUG defined:
ext4_ext_show_leaf(path)
eh = path[depth].p_hdr
// path also use-after-free !!!
So when trying to zeroout or fix the extent length, call ext4_find_extent()
to update the path.
In addition we use *ppath directly as an ext4_ext_show_leaf() input to
avoid possible use-after-free when EXT_DEBUG is defined, and to avoid
unnecessary path updates. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: aovid use-after-free in ext4_ext_insert_extent()
As Ojaswin mentioned in Link, in ext4_ext_insert_extent(), if the path is
reallocated in ext4_ext_create_new_leaf(), we'll use the stale path and
cause UAF. Below is a sample trace with dummy values:
ext4_ext_insert_extent
path = *ppath = 2000
ext4_ext_create_new_leaf(ppath)
ext4_find_extent(ppath)
path = *ppath = 2000
if (depth > path[0].p_maxdepth)
kfree(path = 2000);
*ppath = path = NULL;
path = kcalloc() = 3000
*ppath = 3000;
return path;
/* here path is still 2000, UAF! */
eh = path[depth].p_hdr
==================================================================
BUG: KASAN: slab-use-after-free in ext4_ext_insert_extent+0x26d4/0x3330
Read of size 8 at addr ffff8881027bf7d0 by task kworker/u36:1/179
CPU: 3 UID: 0 PID: 179 Comm: kworker/u6:1 Not tainted 6.11.0-rc2-dirty #866
Call Trace:
<TASK>
ext4_ext_insert_extent+0x26d4/0x3330
ext4_ext_map_blocks+0xe22/0x2d40
ext4_map_blocks+0x71e/0x1700
ext4_do_writepages+0x1290/0x2800
[...]
Allocated by task 179:
ext4_find_extent+0x81c/0x1f70
ext4_ext_map_blocks+0x146/0x2d40
ext4_map_blocks+0x71e/0x1700
ext4_do_writepages+0x1290/0x2800
ext4_writepages+0x26d/0x4e0
do_writepages+0x175/0x700
[...]
Freed by task 179:
kfree+0xcb/0x240
ext4_find_extent+0x7c0/0x1f70
ext4_ext_insert_extent+0xa26/0x3330
ext4_ext_map_blocks+0xe22/0x2d40
ext4_map_blocks+0x71e/0x1700
ext4_do_writepages+0x1290/0x2800
ext4_writepages+0x26d/0x4e0
do_writepages+0x175/0x700
[...]
==================================================================
So use *ppath to update the path to avoid the above problem. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: fix UAF around queue destruction
We currently do stuff like queuing the final destruction step on a
random system wq, which will outlive the driver instance. With bad
timing we can teardown the driver with one or more work workqueue still
being alive leading to various UAF splats. Add a fini step to ensure
user queues are properly torn down. At this point GuC should already be
nuked so queue itself should no longer be referenced from hw pov.
v2 (Matt B)
- Looks much safer to use a waitqueue and then just wait for the
xa_array to become empty before triggering the drain.
(cherry picked from commit 861108666cc0e999cffeab6aff17b662e68774e3) |
In the Linux kernel, the following vulnerability has been resolved:
i3c: master: svc: Fix use after free vulnerability in svc_i3c_master Driver Due to Race Condition
In the svc_i3c_master_probe function, &master->hj_work is bound with
svc_i3c_master_hj_work, &master->ibi_work is bound with
svc_i3c_master_ibi_work. And svc_i3c_master_ibi_work can start the
hj_work, svc_i3c_master_irq_handler can start the ibi_work.
If we remove the module which will call svc_i3c_master_remove to
make cleanup, it will free master->base through i3c_master_unregister
while the work mentioned above will be used. The sequence of operations
that may lead to a UAF bug is as follows:
CPU0 CPU1
| svc_i3c_master_hj_work
svc_i3c_master_remove |
i3c_master_unregister(&master->base)|
device_unregister(&master->dev) |
device_release |
//free master->base |
| i3c_master_do_daa(&master->base)
| //use master->base
Fix it by ensuring that the work is canceled before proceeding with the
cleanup in svc_i3c_master_remove. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: wait for fixup workers before stopping cleaner kthread during umount
During unmount, at close_ctree(), we have the following steps in this order:
1) Park the cleaner kthread - this doesn't destroy the kthread, it basically
halts its execution (wake ups against it work but do nothing);
2) We stop the cleaner kthread - this results in freeing the respective
struct task_struct;
3) We call btrfs_stop_all_workers() which waits for any jobs running in all
the work queues and then free the work queues.
Syzbot reported a case where a fixup worker resulted in a crash when doing
a delayed iput on its inode while attempting to wake up the cleaner at
btrfs_add_delayed_iput(), because the task_struct of the cleaner kthread
was already freed. This can happen during unmount because we don't wait
for any fixup workers still running before we call kthread_stop() against
the cleaner kthread, which stops and free all its resources.
Fix this by waiting for any fixup workers at close_ctree() before we call
kthread_stop() against the cleaner and run pending delayed iputs.
The stack traces reported by syzbot were the following:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x77/0x2050 kernel/locking/lockdep.c:5065
Read of size 8 at addr ffff8880272a8a18 by task kworker/u8:3/52
CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.12.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: btrfs-fixup btrfs_work_helper
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
__lock_acquire+0x77/0x2050 kernel/locking/lockdep.c:5065
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162
class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline]
try_to_wake_up+0xb0/0x1480 kernel/sched/core.c:4154
btrfs_writepage_fixup_worker+0xc16/0xdf0 fs/btrfs/inode.c:2842
btrfs_work_helper+0x390/0xc50 fs/btrfs/async-thread.c:314
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa63/0x1850 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 2:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
unpoison_slab_object mm/kasan/common.c:319 [inline]
__kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345
kasan_slab_alloc include/linux/kasan.h:247 [inline]
slab_post_alloc_hook mm/slub.c:4086 [inline]
slab_alloc_node mm/slub.c:4135 [inline]
kmem_cache_alloc_node_noprof+0x16b/0x320 mm/slub.c:4187
alloc_task_struct_node kernel/fork.c:180 [inline]
dup_task_struct+0x57/0x8c0 kernel/fork.c:1107
copy_process+0x5d1/0x3d50 kernel/fork.c:2206
kernel_clone+0x223/0x880 kernel/fork.c:2787
kernel_thread+0x1bc/0x240 kernel/fork.c:2849
create_kthread kernel/kthread.c:412 [inline]
kthreadd+0x60d/0x810 kernel/kthread.c:765
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Freed by task 61:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:579
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:230 [inline]
slab_free_h
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/vm: move xa_alloc to prevent UAF
Evil user can guess the next id of the vm before the ioctl completes and
then call vm destroy ioctl to trigger UAF since create ioctl is still
referencing the same vm. Move the xa_alloc all the way to the end to
prevent this.
v2:
- Rebase
(cherry picked from commit dcfd3971327f3ee92765154baebbaece833d3ca9) |
In the Linux kernel, the following vulnerability has been resolved:
scsi: elx: libefc: Fix potential use after free in efc_nport_vport_del()
The kref_put() function will call nport->release if the refcount drops to
zero. The nport->release release function is _efc_nport_free() which frees
"nport". But then we dereference "nport" on the next line which is a use
after free. Re-order these lines to avoid the use after free. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/tracing: Fix a potential TP_printk UAF
The commit
afd2627f727b ("tracing: Check "%s" dereference via the field and not the TP_printk format")
exposes potential UAFs in the xe_bo_move trace event.
Fix those by avoiding dereferencing the
xe_mem_type_to_name[] array at TP_printk time.
Since some code refactoring has taken place, explicit backporting may
be needed for kernels older than 6.10. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix Use-After-Free of rsv_qp on HIP08
Currently rsv_qp is freed before ib_unregister_device() is called
on HIP08. During the time interval, users can still dereg MR and
rsv_qp will be used in this process, leading to a UAF. Move the
release of rsv_qp after calling ib_unregister_device() to fix it. |
In the Linux kernel, the following vulnerability has been resolved:
vhost_vdpa: assign irq bypass producer token correctly
We used to call irq_bypass_unregister_producer() in
vhost_vdpa_setup_vq_irq() which is problematic as we don't know if the
token pointer is still valid or not.
Actually, we use the eventfd_ctx as the token so the life cycle of the
token should be bound to the VHOST_SET_VRING_CALL instead of
vhost_vdpa_setup_vq_irq() which could be called by set_status().
Fixing this by setting up irq bypass producer's token when handling
VHOST_SET_VRING_CALL and un-registering the producer before calling
vhost_vring_ioctl() to prevent a possible use after free as eventfd
could have been released in vhost_vring_ioctl(). And such registering
and unregistering will only be done if DRIVER_OK is set. |
In the Linux kernel, the following vulnerability has been resolved:
net: seeq: Fix use after free vulnerability in ether3 Driver Due to Race Condition
In the ether3_probe function, a timer is initialized with a callback
function ether3_ledoff, bound to &prev(dev)->timer. Once the timer is
started, there is a risk of a race condition if the module or device
is removed, triggering the ether3_remove function to perform cleanup.
The sequence of operations that may lead to a UAF bug is as follows:
CPU0 CPU1
| ether3_ledoff
ether3_remove |
free_netdev(dev); |
put_devic |
kfree(dev); |
| ether3_outw(priv(dev)->regs.config2 |= CFG2_CTRLO, REG_CONFIG2);
| // use dev
Fix it by ensuring that the timer is canceled before proceeding with
the cleanup in ether3_remove. |