CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A buffer overflow in the component nfc_device_load_mifare_ul_data of Flipper Devices Inc., Flipper Zero before v0.65.2 allows attackers to cause a Denial of Service (DoS) via a crafted NFC file. |
Memory corruption in Audio during playback with speaker protection. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Validate TA binary size
Add TA binary size validation to avoid OOB write.
(cherry picked from commit c0a04e3570d72aaf090962156ad085e37c62e442) |
In the Linux kernel, the following vulnerability has been resolved:
jfs: Fix shift-out-of-bounds in dbDiscardAG
When searching for the next smaller log2 block, BLKSTOL2() returned 0,
causing shift exponent -1 to be negative.
This patch fixes the issue by exiting the loop directly when negative
shift is found. |
In the Linux kernel, the following vulnerability has been resolved:
efi: runtime: Fix potential overflow of soft-reserved region size
md_size will have been narrowed if we have >= 4GB worth of pages in a
soft-reserved region. |
In the Linux kernel, the following vulnerability has been resolved:
x86/srso: Add SRSO mitigation for Hygon processors
Add mitigation for the speculative return stack overflow vulnerability
which exists on Hygon processors too. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: prevent copying too big compressed lzo segment
Compressed length can be corrupted to be a lot larger than memory
we have allocated for buffer.
This will cause memcpy in copy_compressed_segment to write outside
of allocated memory.
This mostly results in stuck read syscall but sometimes when using
btrfs send can get #GP
kernel: general protection fault, probably for non-canonical address 0x841551d5c1000: 0000 [#1] PREEMPT SMP NOPTI
kernel: CPU: 17 PID: 264 Comm: kworker/u256:7 Tainted: P OE 5.17.0-rc2-1 #12
kernel: Workqueue: btrfs-endio btrfs_work_helper [btrfs]
kernel: RIP: 0010:lzo_decompress_bio (./include/linux/fortify-string.h:225 fs/btrfs/lzo.c:322 fs/btrfs/lzo.c:394) btrfs
Code starting with the faulting instruction
===========================================
0:* 48 8b 06 mov (%rsi),%rax <-- trapping instruction
3: 48 8d 79 08 lea 0x8(%rcx),%rdi
7: 48 83 e7 f8 and $0xfffffffffffffff8,%rdi
b: 48 89 01 mov %rax,(%rcx)
e: 44 89 f0 mov %r14d,%eax
11: 48 8b 54 06 f8 mov -0x8(%rsi,%rax,1),%rdx
kernel: RSP: 0018:ffffb110812efd50 EFLAGS: 00010212
kernel: RAX: 0000000000001000 RBX: 000000009ca264c8 RCX: ffff98996e6d8ff8
kernel: RDX: 0000000000000064 RSI: 000841551d5c1000 RDI: ffffffff9500435d
kernel: RBP: ffff989a3be856c0 R08: 0000000000000000 R09: 0000000000000000
kernel: R10: 0000000000000000 R11: 0000000000001000 R12: ffff98996e6d8000
kernel: R13: 0000000000000008 R14: 0000000000001000 R15: 000841551d5c1000
kernel: FS: 0000000000000000(0000) GS:ffff98a09d640000(0000) knlGS:0000000000000000
kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 00001e9f984d9ea8 CR3: 000000014971a000 CR4: 00000000003506e0
kernel: Call Trace:
kernel: <TASK>
kernel: end_compressed_bio_read (fs/btrfs/compression.c:104 fs/btrfs/compression.c:1363 fs/btrfs/compression.c:323) btrfs
kernel: end_workqueue_fn (fs/btrfs/disk-io.c:1923) btrfs
kernel: btrfs_work_helper (fs/btrfs/async-thread.c:326) btrfs
kernel: process_one_work (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:212 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2312)
kernel: worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2455)
kernel: ? process_one_work (kernel/workqueue.c:2397)
kernel: kthread (kernel/kthread.c:377)
kernel: ? kthread_complete_and_exit (kernel/kthread.c:332)
kernel: ret_from_fork (arch/x86/entry/entry_64.S:301)
kernel: </TASK> |
Networking OS10, versions 10.5.1.x, 10.5.2.x, and 10.5.3.x contain a vulnerability that could allow an attacker to cause a system crash by running particular security scans. |
An issue was discovered in Xpdf 4.04. There is a crash in XRef::fetch(int, int, Object*, int) in xpdf/XRef.cc, a different vulnerability than CVE-2018-16369 and CVE-2019-16088. |
An issue was discovered in Xpdf 4.04. There is a crash in gfseek(_IO_FILE*, long, int) in goo/gfile.cc. |
In wolfSSL before 5.5.1, malicious clients can cause a buffer overflow during a TLS 1.3 handshake. This occurs when an attacker supposedly resumes a previous TLS session. During the resumption Client Hello a Hello Retry Request must be triggered. Both Client Hellos are required to contain a list of duplicate cipher suites to trigger the buffer overflow. In total, two Client Hellos have to be sent: one in the resumed session, and a second one as a response to a Hello Retry Request message. |
Due to lack of proper memory management, when a victim opens a manipulated Jupiter Tesselation (.jt, JTReader.x3d) file received from untrusted sources in SAP 3D Visual Enterprise Viewer - version 9, it is possible that a Remote Code Execution can be triggered when payload forces a stack-based overflow or a re-use of dangling pointer which refers to overwritten space in memory.
|
A remote code execution vulnerability exists in the way the scripting engine handles objects in memory in Microsoft browsers. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, an attacker who successfully exploited the vulnerability could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.
In a web-based attack scenario, an attacker could host a specially crafted website designed to exploit the vulnerability through a Microsoft browser and then convince a user to view the website. An attacker could also embed an ActiveX control marked "safe for initialization" in an application or Microsoft Office document that hosts the browser rendering engine. The attacker could also take advantage of compromised websites and websites that accept or host user-provided content or advertisements. These websites could contain specially crafted content that could exploit the vulnerability.
The security update addresses the vulnerability by modifying how the scripting engine handles objects in memory. |
A remote code execution vulnerability exists in the way the scripting engine handles objects in memory in Microsoft browsers. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, an attacker who successfully exploited the vulnerability could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.
In a web-based attack scenario, an attacker could host a specially crafted website designed to exploit the vulnerability through a Microsoft browser and then convince a user to view the website. An attacker could also embed an ActiveX control marked "safe for initialization" in an application or Microsoft Office document that hosts the browser rendering engine. The attacker could also take advantage of compromised websites and websites that accept or host user-provided content or advertisements. These websites could contain specially crafted content that could exploit the vulnerability.
The security update addresses the vulnerability by modifying how the scripting engine handles objects in memory. |
A remote code execution vulnerability exists in the way that the Chakra scripting engine handles objects in memory in Microsoft Edge (HTML-based). The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, an attacker who successfully exploited the vulnerability could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.
In a web-based attack scenario, an attacker could host a specially crafted website that is designed to exploit the vulnerability through Microsoft Edge (HTML-based) and then convince a user to view the website. The attacker could also take advantage of compromised websites and websites that accept or host user-provided content or advertisements. These websites could contain specially crafted content that could exploit the vulnerability.
The security update addresses the vulnerability by modifying how the Chakra scripting engine handles objects in memory. |
A remote code execution vulnerability exists in the way that the Chakra scripting engine handles objects in memory in Microsoft Edge (HTML-based). The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, an attacker who successfully exploited the vulnerability could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.
In a web-based attack scenario, an attacker could host a specially crafted website that is designed to exploit the vulnerability through Microsoft Edge (HTML-based) and then convince a user to view the website. The attacker could also take advantage of compromised websites and websites that accept or host user-provided content or advertisements. These websites could contain specially crafted content that could exploit the vulnerability.
The security update addresses the vulnerability by modifying how the Chakra scripting engine handles objects in memory. |
A remote code execution vulnerability exists in the way that Microsoft browsers access objects in memory. The vulnerability could corrupt memory in a way that could allow an attacker to execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, the attacker could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.
An attacker could host a specially crafted website that is designed to exploit the vulnerability through Microsoft browsers, and then convince a user to view the website. The attacker could also take advantage of compromised websites, or websites that accept or host user-provided content or advertisements, by adding specially crafted content that could exploit the vulnerability. In all cases, however, an attacker would have no way to force users to view the attacker-controlled content. Instead, an attacker would have to convince users to take action, typically via an enticement in email or instant message, or by getting them to open an email attachment.
The security update addresses the vulnerability by modifying how Microsoft browsers handle objects in memory. |
A remote code execution vulnerability exists in the way that the Chakra scripting engine handles objects in memory in Microsoft Edge (HTML-based). The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, an attacker who successfully exploited the vulnerability could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.
In a web-based attack scenario, an attacker could host a specially crafted website that is designed to exploit the vulnerability through Microsoft Edge (HTML-based) and then convince a user to view the website. The attacker could also take advantage of compromised websites and websites that accept or host user-provided content or advertisements. These websites could contain specially crafted content that could exploit the vulnerability.
The security update addresses the vulnerability by modifying how the Chakra scripting engine handles objects in memory. |
A remote code execution vulnerability exists in the way the scripting engine handles objects in memory in Microsoft browsers. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, an attacker who successfully exploited the vulnerability could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.
In a web-based attack scenario, an attacker could host a specially crafted website designed to exploit the vulnerability through a Microsoft browser and then convince a user to view the website. An attacker could also embed an ActiveX control marked "safe for initialization" in an application or Microsoft Office document that hosts the browser rendering engine. The attacker could also take advantage of compromised websites and websites that accept or host user-provided content or advertisements. These websites could contain specially crafted content that could exploit the vulnerability.
The security update addresses the vulnerability by modifying how the scripting engine handles objects in memory. |
A remote code execution vulnerability exists in the way that the Chakra scripting engine handles objects in memory in Microsoft Edge (HTML-based). The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, an attacker who successfully exploited the vulnerability could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.
In a web-based attack scenario, an attacker could host a specially crafted website that is designed to exploit the vulnerability through Microsoft Edge (HTML-based) and then convince a user to view the website. The attacker could also take advantage of compromised websites and websites that accept or host user-provided content or advertisements. These websites could contain specially crafted content that could exploit the vulnerability.
The security update addresses the vulnerability by modifying how the Chakra scripting engine handles objects in memory. |