Search

Search Results (312959 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2020-36852 2 Custom Searchable Data Entry System Project, Wordpress 2 Custom Searchable Data Entry System, Wordpress 2025-10-02 9.1 Critical
The Custom Searchable Data Entry System plugin for WordPress is vulnerable to unauthenticated database wiping in versions up to, and including 1.7.1, due to a missing capability check and lack of sufficient validation on the ghazale_sds_delete_entries_table_row() function. This makes it possible for unauthenticated attackers to completely wipe database tables such as wp_users.
CVE-2021-4460 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix UBSAN shift-out-of-bounds warning If get_num_sdma_queues or get_num_xgmi_sdma_queues is 0, we end up doing a shift operation where the number of bits shifted equals number of bits in the operand. This behaviour is undefined. Set num_sdma_queues or num_xgmi_sdma_queues to ULLONG_MAX, if the count is >= number of bits in the operand. Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/1472
CVE-2022-50421 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: rpmsg: char: Avoid double destroy of default endpoint The rpmsg_dev_remove() in rpmsg_core is the place for releasing this default endpoint. So need to avoid destroying the default endpoint in rpmsg_chrdev_eptdev_destroy(), this should be the same as rpmsg_eptdev_release(). Otherwise there will be double destroy issue that ept->refcount report warning: refcount_t: underflow; use-after-free. Call trace: refcount_warn_saturate+0xf8/0x150 virtio_rpmsg_destroy_ept+0xd4/0xec rpmsg_dev_remove+0x60/0x70 The issue can be reproduced by stopping remoteproc before closing the /dev/rpmsgX.
CVE-2022-50422 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: libsas: Fix use-after-free bug in smp_execute_task_sg() When executing SMP task failed, the smp_execute_task_sg() calls del_timer() to delete "slow_task->timer". However, if the timer handler sas_task_internal_timedout() is running, the del_timer() in smp_execute_task_sg() will not stop it and a UAF will happen. The process is shown below: (thread 1) | (thread 2) smp_execute_task_sg() | sas_task_internal_timedout() ... | del_timer() | ... | ... sas_free_task(task) | kfree(task->slow_task) //FREE| | task->slow_task->... //USE Fix by calling del_timer_sync() in smp_execute_task_sg(), which makes sure the timer handler have finished before the "task->slow_task" is deallocated.
CVE-2022-50423 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage() There is an use-after-free reported by KASAN: BUG: KASAN: use-after-free in acpi_ut_remove_reference+0x3b/0x82 Read of size 1 at addr ffff888112afc460 by task modprobe/2111 CPU: 0 PID: 2111 Comm: modprobe Not tainted 6.1.0-rc7-dirty Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), Call Trace: <TASK> kasan_report+0xae/0xe0 acpi_ut_remove_reference+0x3b/0x82 acpi_ut_copy_iobject_to_iobject+0x3be/0x3d5 acpi_ds_store_object_to_local+0x15d/0x3a0 acpi_ex_store+0x78d/0x7fd acpi_ex_opcode_1A_1T_1R+0xbe4/0xf9b acpi_ps_parse_aml+0x217/0x8d5 ... </TASK> The root cause of the problem is that the acpi_operand_object is freed when acpi_ut_walk_package_tree() fails in acpi_ut_copy_ipackage_to_ipackage(), lead to repeated release in acpi_ut_copy_iobject_to_iobject(). The problem was introduced by "8aa5e56eeb61" commit, this commit is to fix memory leak in acpi_ut_copy_iobject_to_iobject(), repeatedly adding remove operation, lead to "acpi_operand_object" used after free. Fix it by removing acpi_ut_remove_reference() in acpi_ut_copy_ipackage_to_ipackage(). acpi_ut_copy_ipackage_to_ipackage() is called to copy an internal package object into another internal package object, when it fails, the memory of acpi_operand_object should be freed by the caller.
CVE-2022-50424 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921: resource leaks at mt7921_check_offload_capability() Fixed coverity issue with resource leaks at variable "fw" going out of scope leaks the storage it points to mt7921_check_offload_capability(). Addresses-Coverity-ID: 1527806 ("Resource leaks")
CVE-2022-50425 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Fix copy_xstate_to_uabi() to copy init states correctly When an extended state component is not present in fpstate, but in init state, the function copies from init_fpstate via copy_feature(). But, dynamic states are not present in init_fpstate because of all-zeros init states. Then retrieving them from init_fpstate will explode like this: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... RIP: 0010:memcpy_erms+0x6/0x10 ? __copy_xstate_to_uabi_buf+0x381/0x870 fpu_copy_guest_fpstate_to_uabi+0x28/0x80 kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm] ? __this_cpu_preempt_check+0x13/0x20 ? vmx_vcpu_put+0x2e/0x260 [kvm_intel] kvm_vcpu_ioctl+0xea/0x6b0 [kvm] ? kvm_vcpu_ioctl+0xea/0x6b0 [kvm] ? __fget_light+0xd4/0x130 __x64_sys_ioctl+0xe3/0x910 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x27/0x50 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Adjust the 'mask' to zero out the userspace buffer for the features that are not available both from fpstate and from init_fpstate. The dynamic features depend on the compacted XSAVE format. Ensure it is enabled before reading XCOMP_BV in init_fpstate.
CVE-2022-50428 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix off-by-one errors in fast-commit block filling Due to several different off-by-one errors, or perhaps due to a late change in design that wasn't fully reflected in the code that was actually merged, there are several very strange constraints on how fast-commit blocks are filled with tlv entries: - tlvs must start at least 10 bytes before the end of the block, even though the minimum tlv length is 8. Otherwise, the replay code will ignore them. (BUG: ext4_fc_reserve_space() could violate this requirement if called with a len of blocksize - 9 or blocksize - 8. Fortunately, this doesn't seem to happen currently.) - tlvs must end at least 1 byte before the end of the block. Otherwise the replay code will consider them to be invalid. This quirk contributed to a bug (fixed by an earlier commit) where uninitialized memory was being leaked to disk in the last byte of blocks. Also, strangely these constraints don't apply to the replay code in e2fsprogs, which will accept any tlvs in the blocks (with no bounds checks at all, but that is a separate issue...). Given that this all seems to be a bug, let's fix it by just filling blocks with tlv entries in the natural way. Note that old kernels will be unable to replay fast-commit journals created by kernels that have this commit.
CVE-2022-50431 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: aoa: i2sbus: fix possible memory leak in i2sbus_add_dev() dev_set_name() in soundbus_add_one() allocates memory for name, it need be freed when of_device_register() fails, call soundbus_dev_put() to give up the reference that hold in device_initialize(), so that it can be freed in kobject_cleanup() when the refcount hit to 0. And other resources are also freed in i2sbus_release_dev(), so it can return 0 directly.
CVE-2022-50433 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: efi: ssdt: Don't free memory if ACPI table was loaded successfully Amadeusz reports KASAN use-after-free errors introduced by commit 3881ee0b1edc ("efi: avoid efivars layer when loading SSDTs from variables"). The problem appears to be that the memory that holds the new ACPI table is now freed unconditionally, instead of only when the ACPI core reported a failure to load the table. So let's fix this, by omitting the kfree() on success.
CVE-2022-50436 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: don't set up encryption key during jbd2 transaction Commit a80f7fcf1867 ("ext4: fixup ext4_fc_track_* functions' signature") extended the scope of the transaction in ext4_unlink() too far, making it include the call to ext4_find_entry(). However, ext4_find_entry() can deadlock when called from within a transaction because it may need to set up the directory's encryption key. Fix this by restoring the transaction to its original scope.
CVE-2022-50439 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: mediatek: mt8173: Enable IRQ when pdata is ready If the device does not come straight from reset, we might receive an IRQ before we are ready to handle it. [ 2.334737] Unable to handle kernel read from unreadable memory at virtual address 00000000000001e4 [ 2.522601] Call trace: [ 2.525040] regmap_read+0x1c/0x80 [ 2.528434] mt8173_afe_irq_handler+0x40/0xf0 ... [ 2.598921] start_kernel+0x338/0x42c
CVE-2022-50440 1 Linux 1 Linux Kernel 2025-10-02 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Validate the box size for the snooped cursor Invalid userspace dma surface copies could potentially overflow the memcpy from the surface to the snooped image leading to crashes. To fix it the dimensions of the copybox have to be validated against the expected size of the snooped cursor.
CVE-2022-50443 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/rockchip: lvds: fix PM usage counter unbalance in poweron pm_runtime_get_sync will increment pm usage counter even it failed. Forgetting to putting operation will result in reference leak here. We fix it by replacing it with the newest pm_runtime_resume_and_get to keep usage counter balanced.
CVE-2022-50445 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: xfrm: Reinject transport-mode packets through workqueue The following warning is displayed when the tcp6-multi-diffip11 stress test case of the LTP test suite is tested: watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [ns-tcpserver:48198] CPU: 0 PID: 48198 Comm: ns-tcpserver Kdump: loaded Not tainted 6.0.0-rc6+ #39 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : des3_ede_encrypt+0x27c/0x460 [libdes] lr : 0x3f sp : ffff80000ceaa1b0 x29: ffff80000ceaa1b0 x28: ffff0000df056100 x27: ffff0000e51e5280 x26: ffff80004df75030 x25: ffff0000e51e4600 x24: 000000000000003b x23: 0000000000802080 x22: 000000000000003d x21: 0000000000000038 x20: 0000000080000020 x19: 000000000000000a x18: 0000000000000033 x17: ffff0000e51e4780 x16: ffff80004e2d1448 x15: ffff80004e2d1248 x14: ffff0000e51e4680 x13: ffff80004e2d1348 x12: ffff80004e2d1548 x11: ffff80004e2d1848 x10: ffff80004e2d1648 x9 : ffff80004e2d1748 x8 : ffff80004e2d1948 x7 : 000000000bcaf83d x6 : 000000000000001b x5 : ffff80004e2d1048 x4 : 00000000761bf3bf x3 : 000000007f1dd0a3 x2 : ffff0000e51e4780 x1 : ffff0000e3b9a2f8 x0 : 00000000db44e872 Call trace: des3_ede_encrypt+0x27c/0x460 [libdes] crypto_des3_ede_encrypt+0x1c/0x30 [des_generic] crypto_cbc_encrypt+0x148/0x190 crypto_skcipher_encrypt+0x2c/0x40 crypto_authenc_encrypt+0xc8/0xfc [authenc] crypto_aead_encrypt+0x2c/0x40 echainiv_encrypt+0x144/0x1a0 [echainiv] crypto_aead_encrypt+0x2c/0x40 esp6_output_tail+0x1c8/0x5d0 [esp6] esp6_output+0x120/0x278 [esp6] xfrm_output_one+0x458/0x4ec xfrm_output_resume+0x6c/0x1f0 xfrm_output+0xac/0x4ac __xfrm6_output+0x130/0x270 xfrm6_output+0x60/0xec ip6_xmit+0x2ec/0x5bc inet6_csk_xmit+0xbc/0x10c __tcp_transmit_skb+0x460/0x8c0 tcp_write_xmit+0x348/0x890 __tcp_push_pending_frames+0x44/0x110 tcp_rcv_established+0x3c8/0x720 tcp_v6_do_rcv+0xdc/0x4a0 tcp_v6_rcv+0xc24/0xcb0 ip6_protocol_deliver_rcu+0xf0/0x574 ip6_input_finish+0x48/0x7c ip6_input+0x48/0xc0 ip6_rcv_finish+0x80/0x9c xfrm_trans_reinject+0xb0/0xf4 tasklet_action_common.constprop.0+0xf8/0x134 tasklet_action+0x30/0x3c __do_softirq+0x128/0x368 do_softirq+0xb4/0xc0 __local_bh_enable_ip+0xb0/0xb4 put_cpu_fpsimd_context+0x40/0x70 kernel_neon_end+0x20/0x40 sha1_base_do_update.constprop.0.isra.0+0x11c/0x140 [sha1_ce] sha1_ce_finup+0x94/0x110 [sha1_ce] crypto_shash_finup+0x34/0xc0 hmac_finup+0x48/0xe0 crypto_shash_finup+0x34/0xc0 shash_digest_unaligned+0x74/0x90 crypto_shash_digest+0x4c/0x9c shash_ahash_digest+0xc8/0xf0 shash_async_digest+0x28/0x34 crypto_ahash_digest+0x48/0xcc crypto_authenc_genicv+0x88/0xcc [authenc] crypto_authenc_encrypt+0xd8/0xfc [authenc] crypto_aead_encrypt+0x2c/0x40 echainiv_encrypt+0x144/0x1a0 [echainiv] crypto_aead_encrypt+0x2c/0x40 esp6_output_tail+0x1c8/0x5d0 [esp6] esp6_output+0x120/0x278 [esp6] xfrm_output_one+0x458/0x4ec xfrm_output_resume+0x6c/0x1f0 xfrm_output+0xac/0x4ac __xfrm6_output+0x130/0x270 xfrm6_output+0x60/0xec ip6_xmit+0x2ec/0x5bc inet6_csk_xmit+0xbc/0x10c __tcp_transmit_skb+0x460/0x8c0 tcp_write_xmit+0x348/0x890 __tcp_push_pending_frames+0x44/0x110 tcp_push+0xb4/0x14c tcp_sendmsg_locked+0x71c/0xb64 tcp_sendmsg+0x40/0x6c inet6_sendmsg+0x4c/0x80 sock_sendmsg+0x5c/0x6c __sys_sendto+0x128/0x15c __arm64_sys_sendto+0x30/0x40 invoke_syscall+0x50/0x120 el0_svc_common.constprop.0+0x170/0x194 do_el0_svc+0x38/0x4c el0_svc+0x28/0xe0 el0t_64_sync_handler+0xbc/0x13c el0t_64_sync+0x180/0x184 Get softirq info by bcc tool: ./softirqs -NT 10 Tracing soft irq event time... Hit Ctrl-C to end. 15:34:34 SOFTIRQ TOTAL_nsecs block 158990 timer 20030920 sched 46577080 net_rx 676746820 tasklet 9906067650 15:34:45 SOFTIRQ TOTAL_nsecs block 86100 sched 38849790 net_rx ---truncated---
CVE-2022-50446 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARC: mm: fix leakage of memory allocated for PTE Since commit d9820ff ("ARC: mm: switch pgtable_t back to struct page *") a memory leakage problem occurs. Memory allocated for page table entries not released during process termination. This issue can be reproduced by a small program that allocates a large amount of memory. After several runs, you'll see that the amount of free memory has reduced and will continue to reduce after each run. All ARC CPUs are effected by this issue. The issue was introduced since the kernel stable release v5.15-rc1. As described in commit d9820ff after switch pgtable_t back to struct page *, a pointer to "struct page" and appropriate functions are used to allocate and free a memory page for PTEs, but the pmd_pgtable macro hasn't changed and returns the direct virtual address from the PMD (PGD) entry. Than this address used as a parameter in the __pte_free() and as a result this function couldn't release memory page allocated for PTEs. Fix this issue by changing the pmd_pgtable macro and returning pointer to struct page.
CVE-2022-50447 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_conn: Fix crash on hci_create_cis_sync When attempting to connect multiple ISO sockets without using DEFER_SETUP may result in the following crash: BUG: KASAN: null-ptr-deref in hci_create_cis_sync+0x18b/0x2b0 Read of size 2 at addr 0000000000000036 by task kworker/u3:1/50 CPU: 0 PID: 50 Comm: kworker/u3:1 Not tainted 6.0.0-rc7-02243-gb84a13ff4eda #4373 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-1.fc36 04/01/2014 Workqueue: hci0 hci_cmd_sync_work Call Trace: <TASK> dump_stack_lvl+0x19/0x27 kasan_report+0xbc/0xf0 ? hci_create_cis_sync+0x18b/0x2b0 hci_create_cis_sync+0x18b/0x2b0 ? get_link_mode+0xd0/0xd0 ? __ww_mutex_lock_slowpath+0x10/0x10 ? mutex_lock+0xe0/0xe0 ? get_link_mode+0xd0/0xd0 hci_cmd_sync_work+0x111/0x190 process_one_work+0x427/0x650 worker_thread+0x87/0x750 ? process_one_work+0x650/0x650 kthread+0x14e/0x180 ? kthread_exit+0x50/0x50 ret_from_fork+0x22/0x30 </TASK>
CVE-2022-50448 1 Linux 1 Linux Kernel 2025-10-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/uffd: fix warning without PTE_MARKER_UFFD_WP compiled in When PTE_MARKER_UFFD_WP not configured, it's still possible to reach pte marker code and trigger an warning. Add a few CONFIG_PTE_MARKER_UFFD_WP ifdefs to make sure the code won't be reached when not compiled in.
CVE-2022-50450 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: libbpf: Use elf_getshdrnum() instead of e_shnum This commit replace e_shnum with the elf_getshdrnum() helper to fix two oss-fuzz-reported heap-buffer overflow in __bpf_object__open. Both reports are incorrectly marked as fixed and while still being reproducible in the latest libbpf. # clusterfuzz-testcase-minimized-bpf-object-fuzzer-5747922482888704 libbpf: loading object 'fuzz-object' from buffer libbpf: sec_cnt is 0 libbpf: elf: section(1) .data, size 0, link 538976288, flags 2020202020202020, type=2 libbpf: elf: section(2) .data, size 32, link 538976288, flags 202020202020ff20, type=1 ================================================================= ==13==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6020000000c0 at pc 0x0000005a7b46 bp 0x7ffd12214af0 sp 0x7ffd12214ae8 WRITE of size 4 at 0x6020000000c0 thread T0 SCARINESS: 46 (4-byte-write-heap-buffer-overflow-far-from-bounds) #0 0x5a7b45 in bpf_object__elf_collect /src/libbpf/src/libbpf.c:3414:24 #1 0x5733c0 in bpf_object_open /src/libbpf/src/libbpf.c:7223:16 #2 0x5739fd in bpf_object__open_mem /src/libbpf/src/libbpf.c:7263:20 ... The issue lie in libbpf's direct use of e_shnum field in ELF header as the section header count. Where as libelf implemented an extra logic that, when e_shnum == 0 && e_shoff != 0, will use sh_size member of the initial section header as the real section header count (part of ELF spec to accommodate situation where section header counter is larger than SHN_LORESERVE). The above inconsistency lead to libbpf writing into a zero-entry calloc area. So intead of using e_shnum directly, use the elf_getshdrnum() helper provided by libelf to retrieve the section header counter into sec_cnt.
CVE-2022-50451 1 Linux 1 Linux Kernel 2025-10-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix memory leak on ntfs_fill_super() error path syzbot reported kmemleak as below: BUG: memory leak unreferenced object 0xffff8880122f1540 (size 32): comm "a.out", pid 6664, jiffies 4294939771 (age 25.500s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 ed ff ed ff 00 00 00 00 ................ backtrace: [<ffffffff81b16052>] ntfs_init_fs_context+0x22/0x1c0 [<ffffffff8164aaa7>] alloc_fs_context+0x217/0x430 [<ffffffff81626dd4>] path_mount+0x704/0x1080 [<ffffffff81627e7c>] __x64_sys_mount+0x18c/0x1d0 [<ffffffff84593e14>] do_syscall_64+0x34/0xb0 [<ffffffff84600087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd This patch fixes this issue by freeing mount options on error path of ntfs_fill_super().