Search

Search Results (310290 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-39749 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rcu: Protect ->defer_qs_iw_pending from data race On kernels built with CONFIG_IRQ_WORK=y, when rcu_read_unlock() is invoked within an interrupts-disabled region of code [1], it will invoke rcu_read_unlock_special(), which uses an irq-work handler to force the system to notice when the RCU read-side critical section actually ends. That end won't happen until interrupts are enabled at the soonest. In some kernels, such as those booted with rcutree.use_softirq=y, the irq-work handler is used unconditionally. The per-CPU rcu_data structure's ->defer_qs_iw_pending field is updated by the irq-work handler and is both read and updated by rcu_read_unlock_special(). This resulted in the following KCSAN splat: ------------------------------------------------------------------------ BUG: KCSAN: data-race in rcu_preempt_deferred_qs_handler / rcu_read_unlock_special read to 0xffff96b95f42d8d8 of 1 bytes by task 90 on cpu 8: rcu_read_unlock_special+0x175/0x260 __rcu_read_unlock+0x92/0xa0 rt_spin_unlock+0x9b/0xc0 __local_bh_enable+0x10d/0x170 __local_bh_enable_ip+0xfb/0x150 rcu_do_batch+0x595/0xc40 rcu_cpu_kthread+0x4e9/0x830 smpboot_thread_fn+0x24d/0x3b0 kthread+0x3bd/0x410 ret_from_fork+0x35/0x40 ret_from_fork_asm+0x1a/0x30 write to 0xffff96b95f42d8d8 of 1 bytes by task 88 on cpu 8: rcu_preempt_deferred_qs_handler+0x1e/0x30 irq_work_single+0xaf/0x160 run_irq_workd+0x91/0xc0 smpboot_thread_fn+0x24d/0x3b0 kthread+0x3bd/0x410 ret_from_fork+0x35/0x40 ret_from_fork_asm+0x1a/0x30 no locks held by irq_work/8/88. irq event stamp: 200272 hardirqs last enabled at (200272): [<ffffffffb0f56121>] finish_task_switch+0x131/0x320 hardirqs last disabled at (200271): [<ffffffffb25c7859>] __schedule+0x129/0xd70 softirqs last enabled at (0): [<ffffffffb0ee093f>] copy_process+0x4df/0x1cc0 softirqs last disabled at (0): [<0000000000000000>] 0x0 ------------------------------------------------------------------------ The problem is that irq-work handlers run with interrupts enabled, which means that rcu_preempt_deferred_qs_handler() could be interrupted, and that interrupt handler might contain an RCU read-side critical section, which might invoke rcu_read_unlock_special(). In the strict KCSAN mode of operation used by RCU, this constitutes a data race on the ->defer_qs_iw_pending field. This commit therefore disables interrupts across the portion of the rcu_preempt_deferred_qs_handler() that updates the ->defer_qs_iw_pending field. This suffices because this handler is not a fast path.
CVE-2025-39748 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Forget ranges when refining tnum after JSET Syzbot reported a kernel warning due to a range invariant violation on the following BPF program. 0: call bpf_get_netns_cookie 1: if r0 == 0 goto <exit> 2: if r0 & Oxffffffff goto <exit> The issue is on the path where we fall through both jumps. That path is unreachable at runtime: after insn 1, we know r0 != 0, but with the sign extension on the jset, we would only fallthrough insn 2 if r0 == 0. Unfortunately, is_branch_taken() isn't currently able to figure this out, so the verifier walks all branches. The verifier then refines the register bounds using the second condition and we end up with inconsistent bounds on this unreachable path: 1: if r0 == 0 goto <exit> r0: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0xffffffffffffffff) 2: if r0 & 0xffffffff goto <exit> r0 before reg_bounds_sync: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0) r0 after reg_bounds_sync: u64=[0x1, 0] var_off=(0, 0) Improving the range refinement for JSET to cover all cases is tricky. We also don't expect many users to rely on JSET given LLVM doesn't generate those instructions. So instead of improving the range refinement for JSETs, Eduard suggested we forget the ranges whenever we're narrowing tnums after a JSET. This patch implements that approach.
CVE-2025-39746 1 Linux 1 Linux Kernel 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath10k: shutdown driver when hardware is unreliable In rare cases, ath10k may lose connection with the PCIe bus due to some unknown reasons, which could further lead to system crashes during resuming due to watchdog timeout: ath10k_pci 0000:01:00.0: wmi command 20486 timeout, restarting hardware ath10k_pci 0000:01:00.0: already restarting ath10k_pci 0000:01:00.0: failed to stop WMI vdev 0: -11 ath10k_pci 0000:01:00.0: failed to stop vdev 0: -11 ieee80211 phy0: PM: **** DPM device timeout **** Call Trace: panic+0x125/0x315 dpm_watchdog_set+0x54/0x54 dpm_watchdog_handler+0x57/0x57 call_timer_fn+0x31/0x13c At this point, all WMI commands will timeout and attempt to restart device. So set a threshold for consecutive restart failures. If the threshold is exceeded, consider the hardware is unreliable and all ath10k operations should be skipped to avoid system crash. fail_cont_count and pending_recovery are atomic variables, and do not involve complex conditional logic. Therefore, even if recovery check and reconfig complete are executed concurrently, the recovery mechanism will not be broken. Tested-on: QCA6174 hw3.2 PCI WLAN.RM.4.4.1-00288-QCARMSWPZ-1
CVE-2025-39744 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rcu: Fix rcu_read_unlock() deadloop due to IRQ work During rcu_read_unlock_special(), if this happens during irq_exit(), we can lockup if an IPI is issued. This is because the IPI itself triggers the irq_exit() path causing a recursive lock up. This is precisely what Xiongfeng found when invoking a BPF program on the trace_tick_stop() tracepoint As shown in the trace below. Fix by managing the irq_work state correctly. irq_exit() __irq_exit_rcu() /* in_hardirq() returns false after this */ preempt_count_sub(HARDIRQ_OFFSET) tick_irq_exit() tick_nohz_irq_exit() tick_nohz_stop_sched_tick() trace_tick_stop() /* a bpf prog is hooked on this trace point */ __bpf_trace_tick_stop() bpf_trace_run2() rcu_read_unlock_special() /* will send a IPI to itself */ irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); A simple reproducer can also be obtained by doing the following in tick_irq_exit(). It will hang on boot without the patch: static inline void tick_irq_exit(void) { + rcu_read_lock(); + WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); + rcu_read_unlock(); + [neeraj: Apply Frederic's suggested fix for PREEMPT_RT]
CVE-2025-39737 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/kmemleak: avoid soft lockup in __kmemleak_do_cleanup() A soft lockup warning was observed on a relative small system x86-64 system with 16 GB of memory when running a debug kernel with kmemleak enabled. watchdog: BUG: soft lockup - CPU#8 stuck for 33s! [kworker/8:1:134] The test system was running a workload with hot unplug happening in parallel. Then kemleak decided to disable itself due to its inability to allocate more kmemleak objects. The debug kernel has its CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE set to 40,000. The soft lockup happened in kmemleak_do_cleanup() when the existing kmemleak objects were being removed and deleted one-by-one in a loop via a workqueue. In this particular case, there are at least 40,000 objects that need to be processed and given the slowness of a debug kernel and the fact that a raw_spinlock has to be acquired and released in __delete_object(), it could take a while to properly handle all these objects. As kmemleak has been disabled in this case, the object removal and deletion process can be further optimized as locking isn't really needed. However, it is probably not worth the effort to optimize for such an edge case that should rarely happen. So the simple solution is to call cond_resched() at periodic interval in the iteration loop to avoid soft lockup.
CVE-2025-9807 2 Theeventscalendar, Wordpress 2 The Events Calendar, Wordpress 2025-09-15 7.5 High
The The Events Calendar plugin for WordPress is vulnerable to time-based SQL Injection via the ‘s’ parameter in all versions up to, and including, 6.15.1 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
CVE-2025-9214 1 Lenovo 1 Printer 2025-09-15 5.4 Medium
A missing authentication vulnerability was reported in some Lenovo printers that could allow a user to view limited device information or modify network settings via the CUPS service.
CVE-2025-9201 1 Lenovo 2 Browser, Browser Hd 2025-09-15 7.8 High
A potential DLL hijacking vulnerability was discovered in Lenovo Browser during an internal security assessment that could allow a local user to execute code with elevated privileges.
CVE-2025-8557 1 Lenovo 1 Xclarity Orchestrator 2025-09-15 8.8 High
An internal product security audit of Lenovo XClarity Orchestrator (LXCO) discovered the below vulnerability: An attacker with access to a device on the local Lenovo XClarity Orchestrator (LXCO) network segment may be able to manipulate the local device to create an alternate communication channel which could allow the attacker, under certain conditions, to directly interact with backend LXCO API services typically inaccessible to users. While access controls may limit the scope of interaction, this could result in unauthorized access to internal functionality or data. This issue is not exploitable from remote networks.
CVE-2025-59047 1 Matrix 1 Matrix-rust-sdk 2025-09-15 N/A
matrix-sdk-base is the base component to build a Matrix client library. In matrix-sdk-base before 0.14.1, calling the `RoomMember::normalized_power_level()` method can cause a panic if a room member has a power level of `Int::Min`. The issue is fixed in matrix-sdk-base 0.14.1. The affected method isn’t used internally, so avoiding calling `RoomMember::normalized_power_level()` prevents the panic.
CVE-2025-58060 3 Linux, Openprinting, Redhat 3 Linux, Cups, Enterprise Linux 2025-09-15 8 High
OpenPrinting CUPS is an open source printing system for Linux and other Unix-like operating systems. In versions 2.4.12 and earlier, when the `AuthType` is set to anything but `Basic`, if the request contains an `Authorization: Basic ...` header, the password is not checked. This results in authentication bypass. Any configuration that allows an `AuthType` that is not `Basic` is affected. Version 2.4.13 fixes the issue.
CVE-2025-43782 1 Liferay 2 Dxp, Portal 2025-09-15 N/A
Insecure Direct Object Reference (IDOR) vulnerability in Liferay Portal 7.4.0 through 7.4.3.124, and Liferay DXP 2024.Q2.0 through 2024.Q2.7, 2024.Q1.1 through 2024.Q1.12, and 7.4 GA through update 92 allows remote authenticated users to access a workflow definition by name via the API
CVE-2025-39777 1 Linux 1 Linux Kernel 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: crypto: acomp - Fix CFI failure due to type punning To avoid a crash when control flow integrity is enabled, make the workspace ("stream") free function use a consistent type, and call it through a function pointer that has that same type.
CVE-2025-39764 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: ctnetlink: remove refcounting in expectation dumpers Same pattern as previous patch: do not keep the expectation object alive via refcount, only store a cookie value and then use that as the skip hint for dump resumption. AFAICS this has the same issue as the one resolved in the conntrack dumper, when we do if (!refcount_inc_not_zero(&exp->use)) to increment the refcount, there is a chance that exp == last, which causes a double-increment of the refcount and subsequent memory leak.
CVE-2025-39762 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: add null check [WHY] Prevents null pointer dereferences to enhance function robustness [HOW] Adds early null check and return false if invalid.
CVE-2025-39760 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: core: config: Prevent OOB read in SS endpoint companion parsing usb_parse_ss_endpoint_companion() checks descriptor type before length, enabling a potentially odd read outside of the buffer size. Fix this up by checking the size first before looking at any of the fields in the descriptor.
CVE-2025-39759 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: qgroup: fix race between quota disable and quota rescan ioctl There's a race between a task disabling quotas and another running the rescan ioctl that can result in a use-after-free of qgroup records from the fs_info->qgroup_tree rbtree. This happens as follows: 1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan(); 2) Task B enters btrfs_quota_disable() and calls btrfs_qgroup_wait_for_completion(), which does nothing because at that point fs_info->qgroup_rescan_running is false (it wasn't set yet by task A); 3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock; 4) Task A enters qgroup_rescan_zero_tracking() which starts iterating the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock, but task B is freeing qgroup records from that tree without holding the lock, resulting in a use-after-free. Fix this by taking fs_info->qgroup_lock at btrfs_free_qgroup_config(). Also at btrfs_qgroup_rescan() don't start the rescan worker if quotas were already disabled.
CVE-2025-39758 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Fix the sendmsg byte count in siw_tcp_sendpages Ever since commit c2ff29e99a76 ("siw: Inline do_tcp_sendpages()"), we have been doing this: static int siw_tcp_sendpages(struct socket *s, struct page **page, int offset, size_t size) [...] /* Calculate the number of bytes we need to push, for this page * specifically */ size_t bytes = min_t(size_t, PAGE_SIZE - offset, size); /* If we can't splice it, then copy it in, as normal */ if (!sendpage_ok(page[i])) msg.msg_flags &= ~MSG_SPLICE_PAGES; /* Set the bvec pointing to the page, with len $bytes */ bvec_set_page(&bvec, page[i], bytes, offset); /* Set the iter to $size, aka the size of the whole sendpages (!!!) */ iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); try_page_again: lock_sock(sk); /* Sendmsg with $size size (!!!) */ rv = tcp_sendmsg_locked(sk, &msg, size); This means we've been sending oversized iov_iters and tcp_sendmsg calls for a while. This has a been a benign bug because sendpage_ok() always returned true. With the recent slab allocator changes being slowly introduced into next (that disallow sendpage on large kmalloc allocations), we have recently hit out-of-bounds crashes, due to slight differences in iov_iter behavior between the MSG_SPLICE_PAGES and "regular" copy paths: (MSG_SPLICE_PAGES) skb_splice_from_iter iov_iter_extract_pages iov_iter_extract_bvec_pages uses i->nr_segs to correctly stop in its tracks before OoB'ing everywhere skb_splice_from_iter gets a "short" read (!MSG_SPLICE_PAGES) skb_copy_to_page_nocache copy=iov_iter_count [...] copy_from_iter /* this doesn't help */ if (unlikely(iter->count < len)) len = iter->count; iterate_bvec ... and we run off the bvecs Fix this by properly setting the iov_iter's byte count, plus sending the correct byte count to tcp_sendmsg_locked.
CVE-2025-39752 1 Linux 1 Linux Kernel 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: rockchip: fix kernel hang during smp initialization In order to bring up secondary CPUs main CPU write trampoline code to SRAM. The trampoline code is written while secondary CPUs are powered on (at least that true for RK3188 CPU). Sometimes that leads to kernel hang. Probably because secondary CPU execute trampoline code while kernel doesn't expect. The patch moves SRAM initialization step to the point where all secondary CPUs are powered down. That fixes rarely hangs on RK3188: [ 0.091568] CPU0: thread -1, cpu 0, socket 0, mpidr 80000000 [ 0.091996] rockchip_smp_prepare_cpus: ncores 4
CVE-2025-39750 1 Linux 1 Linux Kernel 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Correct tid cleanup when tid setup fails Currently, if any error occurs during ath12k_dp_rx_peer_tid_setup(), the tid value is already incremented, even though the corresponding TID is not actually allocated. Proceed to ath12k_dp_rx_peer_tid_delete() starting from unallocated tid, which might leads to freeing unallocated TID and cause potential crash or out-of-bounds access. Hence, fix by correctly decrementing tid before cleanup to match only the successfully allocated TIDs. Also, remove tid-- from failure case of ath12k_dp_rx_peer_frag_setup(), as decrementing the tid before cleanup in loop will take care of this. Compile tested only.