CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: Fix PM usage_count for console handover
When console is enabled, univ8250_console_setup() calls
serial8250_console_setup() before .dev is set to uart_port. Therefore,
it will not call pm_runtime_get_sync(). Later, when the actual driver
is going to take over univ8250_console_exit() is called. As .dev is
already set, serial8250_console_exit() makes pm_runtime_put_sync() call
with usage count being zero triggering PM usage count warning
(extra debug for univ8250_console_setup(), univ8250_console_exit(), and
serial8250_register_ports()):
[ 0.068987] univ8250_console_setup ttyS0 nodev
[ 0.499670] printk: console [ttyS0] enabled
[ 0.717955] printk: console [ttyS0] printing thread started
[ 1.960163] serial8250_register_ports assigned dev for ttyS0
[ 1.976830] printk: console [ttyS0] disabled
[ 1.976888] printk: console [ttyS0] printing thread stopped
[ 1.977073] univ8250_console_exit ttyS0 usage:0
[ 1.977075] serial8250 serial8250: Runtime PM usage count underflow!
[ 1.977429] dw-apb-uart.6: ttyS0 at MMIO 0x4010006000 (irq = 33, base_baud = 115200) is a 16550A
[ 1.977812] univ8250_console_setup ttyS0 usage:2
[ 1.978167] printk: console [ttyS0] printing thread started
[ 1.978203] printk: console [ttyS0] enabled
To fix the issue, call pm_runtime_get_sync() in
serial8250_register_ports() as soon as .dev is set for an uart_port
if it has console enabled.
This problem became apparent only recently because 82586a721595 ("PM:
runtime: Avoid device usage count underflows") added the warning
printout. I confirmed this problem also occurs with v5.18 (w/o the
warning printout, obviously). |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix dereference of stale list iterator after loop body
The list iterator variable will be a bogus pointer if no break was hit.
Dereferencing it (cur->page in this case) could load an out-of-bounds/undefined
value making it unsafe to use that in the comparision to determine if the
specific element was found.
Since 'cur->page' *can* be out-ouf-bounds it cannot be guaranteed that
by chance (or intention of an attacker) it matches the value of 'page'
even though the correct element was not found.
This is fixed by using a separate list iterator variable for the loop
and only setting the original variable if a suitable element was found.
Then determing if the element was found is simply checking if the
variable is set. |
In the Linux kernel, the following vulnerability has been resolved:
parisc: Try to fix random segmentation faults in package builds
PA-RISC systems with PA8800 and PA8900 processors have had problems
with random segmentation faults for many years. Systems with earlier
processors are much more stable.
Systems with PA8800 and PA8900 processors have a large L2 cache which
needs per page flushing for decent performance when a large range is
flushed. The combined cache in these systems is also more sensitive to
non-equivalent aliases than the caches in earlier systems.
The majority of random segmentation faults that I have looked at
appear to be memory corruption in memory allocated using mmap and
malloc.
My first attempt at fixing the random faults didn't work. On
reviewing the cache code, I realized that there were two issues
which the existing code didn't handle correctly. Both relate
to cache move-in. Another issue is that the present bit in PTEs
is racy.
1) PA-RISC caches have a mind of their own and they can speculatively
load data and instructions for a page as long as there is a entry in
the TLB for the page which allows move-in. TLBs are local to each
CPU. Thus, the TLB entry for a page must be purged before flushing
the page. This is particularly important on SMP systems.
In some of the flush routines, the flush routine would be called
and then the TLB entry would be purged. This was because the flush
routine needed the TLB entry to do the flush.
2) My initial approach to trying the fix the random faults was to
try and use flush_cache_page_if_present for all flush operations.
This actually made things worse and led to a couple of hardware
lockups. It finally dawned on me that some lines weren't being
flushed because the pte check code was racy. This resulted in
random inequivalent mappings to physical pages.
The __flush_cache_page tmpalias flush sets up its own TLB entry
and it doesn't need the existing TLB entry. As long as we can find
the pte pointer for the vm page, we can get the pfn and physical
address of the page. We can also purge the TLB entry for the page
before doing the flush. Further, __flush_cache_page uses a special
TLB entry that inhibits cache move-in.
When switching page mappings, we need to ensure that lines are
removed from the cache. It is not sufficient to just flush the
lines to memory as they may come back.
This made it clear that we needed to implement all the required
flush operations using tmpalias routines. This includes flushes
for user and kernel pages.
After modifying the code to use tmpalias flushes, it became clear
that the random segmentation faults were not fully resolved. The
frequency of faults was worse on systems with a 64 MB L2 (PA8900)
and systems with more CPUs (rp4440).
The warning that I added to flush_cache_page_if_present to detect
pages that couldn't be flushed triggered frequently on some systems.
Helge and I looked at the pages that couldn't be flushed and found
that the PTE was either cleared or for a swap page. Ignoring pages
that were swapped out seemed okay but pages with cleared PTEs seemed
problematic.
I looked at routines related to pte_clear and noticed ptep_clear_flush.
The default implementation just flushes the TLB entry. However, it was
obvious that on parisc we need to flush the cache page as well. If
we don't flush the cache page, stale lines will be left in the cache
and cause random corruption. Once a PTE is cleared, there is no way
to find the physical address associated with the PTE and flush the
associated page at a later time.
I implemented an updated change with a parisc specific version of
ptep_clear_flush. It fixed the random data corruption on Helge's rp4440
and rp3440, as well as on my c8000.
At this point, I realized that I could restore the code where we only
flush in flush_cache_page_if_present if the page has been accessed.
However, for this, we also need to flush the cache when the accessed
bit is cleared in
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: range check cp bad op exception interrupts
Due to a CP interrupt bug, bad packet garbage exception codes are raised.
Do a range check so that the debugger and runtime do not receive garbage
codes.
Update the user api to guard exception code type checking as well. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix read pointer after free in ath12k_mac_assign_vif_to_vdev()
In ath12k_mac_assign_vif_to_vdev(), if arvif is created on a different
radio, it gets deleted from that radio through a call to
ath12k_mac_unassign_link_vif(). This action frees the arvif pointer.
Subsequently, there is a check involving arvif, which will result in a
read-after-free scenario.
Fix this by moving this check after arvif is again assigned via call to
ath12k_mac_assign_link_vif().
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix general protection fault in ivpu_bo_list()
Check if ctx is not NULL before accessing its fields. |
In the Linux kernel, the following vulnerability has been resolved:
igb: revert rtnl_lock() that causes deadlock
The commit 6faee3d4ee8b ("igb: Add lock to avoid data race") adds
rtnl_lock to eliminate a false data race shown below
(FREE from device detaching) | (USE from netdev core)
igb_remove | igb_ndo_get_vf_config
igb_disable_sriov | vf >= adapter->vfs_allocated_count?
kfree(adapter->vf_data) |
adapter->vfs_allocated_count = 0 |
| memcpy(... adapter->vf_data[vf]
The above race will never happen and the extra rtnl_lock causes deadlock
below
[ 141.420169] <TASK>
[ 141.420672] __schedule+0x2dd/0x840
[ 141.421427] schedule+0x50/0xc0
[ 141.422041] schedule_preempt_disabled+0x11/0x20
[ 141.422678] __mutex_lock.isra.13+0x431/0x6b0
[ 141.423324] unregister_netdev+0xe/0x20
[ 141.423578] igbvf_remove+0x45/0xe0 [igbvf]
[ 141.423791] pci_device_remove+0x36/0xb0
[ 141.423990] device_release_driver_internal+0xc1/0x160
[ 141.424270] pci_stop_bus_device+0x6d/0x90
[ 141.424507] pci_stop_and_remove_bus_device+0xe/0x20
[ 141.424789] pci_iov_remove_virtfn+0xba/0x120
[ 141.425452] sriov_disable+0x2f/0xf0
[ 141.425679] igb_disable_sriov+0x4e/0x100 [igb]
[ 141.426353] igb_remove+0xa0/0x130 [igb]
[ 141.426599] pci_device_remove+0x36/0xb0
[ 141.426796] device_release_driver_internal+0xc1/0x160
[ 141.427060] driver_detach+0x44/0x90
[ 141.427253] bus_remove_driver+0x55/0xe0
[ 141.427477] pci_unregister_driver+0x2a/0xa0
[ 141.428296] __x64_sys_delete_module+0x141/0x2b0
[ 141.429126] ? mntput_no_expire+0x4a/0x240
[ 141.429363] ? syscall_trace_enter.isra.19+0x126/0x1a0
[ 141.429653] do_syscall_64+0x5b/0x80
[ 141.429847] ? exit_to_user_mode_prepare+0x14d/0x1c0
[ 141.430109] ? syscall_exit_to_user_mode+0x12/0x30
[ 141.430849] ? do_syscall_64+0x67/0x80
[ 141.431083] ? syscall_exit_to_user_mode_prepare+0x183/0x1b0
[ 141.431770] ? syscall_exit_to_user_mode+0x12/0x30
[ 141.432482] ? do_syscall_64+0x67/0x80
[ 141.432714] ? exc_page_fault+0x64/0x140
[ 141.432911] entry_SYSCALL_64_after_hwframe+0x72/0xdc
Since the igb_disable_sriov() will call pci_disable_sriov() before
releasing any resources, the netdev core will synchronize the cleanup to
avoid any races. This patch removes the useless rtnl_(un)lock to guarantee
correctness. |
In the Linux kernel, the following vulnerability has been resolved:
ima: fix buffer overrun in ima_eventdigest_init_common
Function ima_eventdigest_init() calls ima_eventdigest_init_common()
with HASH_ALGO__LAST which is then used to access the array
hash_digest_size[] leading to buffer overrun. Have a conditional
statement to handle this. |
In the Linux kernel, the following vulnerability has been resolved:
sh: cpuinfo: Fix a warning for CONFIG_CPUMASK_OFFSTACK
When CONFIG_CPUMASK_OFFSTACK and CONFIG_DEBUG_PER_CPU_MAPS are selected,
cpu_max_bits_warn() generates a runtime warning similar as below when
showing /proc/cpuinfo. Fix this by using nr_cpu_ids (the runtime limit)
instead of NR_CPUS to iterate CPUs.
[ 3.052463] ------------[ cut here ]------------
[ 3.059679] WARNING: CPU: 3 PID: 1 at include/linux/cpumask.h:108 show_cpuinfo+0x5e8/0x5f0
[ 3.070072] Modules linked in: efivarfs autofs4
[ 3.076257] CPU: 0 PID: 1 Comm: systemd Not tainted 5.19-rc5+ #1052
[ 3.099465] Stack : 9000000100157b08 9000000000f18530 9000000000cf846c 9000000100154000
[ 3.109127] 9000000100157a50 0000000000000000 9000000100157a58 9000000000ef7430
[ 3.118774] 90000001001578e8 0000000000000040 0000000000000020 ffffffffffffffff
[ 3.128412] 0000000000aaaaaa 1ab25f00eec96a37 900000010021de80 900000000101c890
[ 3.138056] 0000000000000000 0000000000000000 0000000000000000 0000000000aaaaaa
[ 3.147711] ffff8000339dc220 0000000000000001 0000000006ab4000 0000000000000000
[ 3.157364] 900000000101c998 0000000000000004 9000000000ef7430 0000000000000000
[ 3.167012] 0000000000000009 000000000000006c 0000000000000000 0000000000000000
[ 3.176641] 9000000000d3de08 9000000001639390 90000000002086d8 00007ffff0080286
[ 3.186260] 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1c
[ 3.195868] ...
[ 3.199917] Call Trace:
[ 3.203941] [<90000000002086d8>] show_stack+0x38/0x14c
[ 3.210666] [<9000000000cf846c>] dump_stack_lvl+0x60/0x88
[ 3.217625] [<900000000023d268>] __warn+0xd0/0x100
[ 3.223958] [<9000000000cf3c90>] warn_slowpath_fmt+0x7c/0xcc
[ 3.231150] [<9000000000210220>] show_cpuinfo+0x5e8/0x5f0
[ 3.238080] [<90000000004f578c>] seq_read_iter+0x354/0x4b4
[ 3.245098] [<90000000004c2e90>] new_sync_read+0x17c/0x1c4
[ 3.252114] [<90000000004c5174>] vfs_read+0x138/0x1d0
[ 3.258694] [<90000000004c55f8>] ksys_read+0x70/0x100
[ 3.265265] [<9000000000cfde9c>] do_syscall+0x7c/0x94
[ 3.271820] [<9000000000202fe4>] handle_syscall+0xc4/0x160
[ 3.281824] ---[ end trace 8b484262b4b8c24c ]--- |
In the Linux kernel, the following vulnerability has been resolved:
mm: don't try to NUMA-migrate COW pages that have other uses
Oded Gabbay reports that enabling NUMA balancing causes corruption with
his Gaudi accelerator test load:
"All the details are in the bug, but the bottom line is that somehow,
this patch causes corruption when the numa balancing feature is
enabled AND we don't use process affinity AND we use GUP to pin pages
so our accelerator can DMA to/from system memory.
Either disabling numa balancing, using process affinity to bind to
specific numa-node or reverting this patch causes the bug to
disappear"
and Oded bisected the issue to commit 09854ba94c6a ("mm: do_wp_page()
simplification").
Now, the NUMA balancing shouldn't actually be changing the writability
of a page, and as such shouldn't matter for COW. But it appears it
does. Suspicious.
However, regardless of that, the condition for enabling NUMA faults in
change_pte_range() is nonsensical. It uses "page_mapcount(page)" to
decide if a COW page should be NUMA-protected or not, and that makes
absolutely no sense.
The number of mappings a page has is irrelevant: not only does GUP get a
reference to a page as in Oded's case, but the other mappings migth be
paged out and the only reference to them would be in the page count.
Since we should never try to NUMA-balance a page that we can't move
anyway due to other references, just fix the code to use 'page_count()'.
Oded confirms that that fixes his issue.
Now, this does imply that something in NUMA balancing ends up changing
page protections (other than the obvious one of making the page
inaccessible to get the NUMA faulting information). Otherwise the COW
simplification wouldn't matter - since doing the GUP on the page would
make sure it's writable.
The cause of that permission change would be good to figure out too,
since it clearly results in spurious COW events - but fixing the
nonsensical test that just happened to work before is obviously the
CorrectThing(tm) to do regardless. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: atmel: Add missing of_node_put() in at91sam9g20ek_audio_probe
This node pointer is returned by of_parse_phandle() with refcount
incremented in this function.
Calling of_node_put() to avoid the refcount leak. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: HCI: Fix global-out-of-bounds
To loop a variable-length array, hci_init_stage_sync(stage) considers
that stage[i] is valid as long as stage[i-1].func is valid.
Thus, the last element of stage[].func should be intentionally invalid
as hci_init0[], le_init2[], and others did.
However, amp_init1[] and amp_init2[] have no invalid element, letting
hci_init_stage_sync() keep accessing amp_init1[] over its valid range.
This patch fixes this by adding {} in the last of amp_init1[] and
amp_init2[].
==================================================================
BUG: KASAN: global-out-of-bounds in hci_dev_open_sync (
/v6.2-bzimage/net/bluetooth/hci_sync.c:3154
/v6.2-bzimage/net/bluetooth/hci_sync.c:3343
/v6.2-bzimage/net/bluetooth/hci_sync.c:4418
/v6.2-bzimage/net/bluetooth/hci_sync.c:4609
/v6.2-bzimage/net/bluetooth/hci_sync.c:4689)
Read of size 8 at addr ffffffffaed1ab70 by task kworker/u5:0/1032
CPU: 0 PID: 1032 Comm: kworker/u5:0 Not tainted 6.2.0 #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04
Workqueue: hci1 hci_power_on
Call Trace:
<TASK>
dump_stack_lvl (/v6.2-bzimage/lib/dump_stack.c:107 (discriminator 1))
print_report (/v6.2-bzimage/mm/kasan/report.c:307
/v6.2-bzimage/mm/kasan/report.c:417)
? hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154
/v6.2-bzimage/net/bluetooth/hci_sync.c:3343
/v6.2-bzimage/net/bluetooth/hci_sync.c:4418
/v6.2-bzimage/net/bluetooth/hci_sync.c:4609
/v6.2-bzimage/net/bluetooth/hci_sync.c:4689)
kasan_report (/v6.2-bzimage/mm/kasan/report.c:184
/v6.2-bzimage/mm/kasan/report.c:519)
? hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154
/v6.2-bzimage/net/bluetooth/hci_sync.c:3343
/v6.2-bzimage/net/bluetooth/hci_sync.c:4418
/v6.2-bzimage/net/bluetooth/hci_sync.c:4609
/v6.2-bzimage/net/bluetooth/hci_sync.c:4689)
hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154
/v6.2-bzimage/net/bluetooth/hci_sync.c:3343
/v6.2-bzimage/net/bluetooth/hci_sync.c:4418
/v6.2-bzimage/net/bluetooth/hci_sync.c:4609
/v6.2-bzimage/net/bluetooth/hci_sync.c:4689)
? __pfx_hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:4635)
? mutex_lock (/v6.2-bzimage/./arch/x86/include/asm/atomic64_64.h:190
/v6.2-bzimage/./include/linux/atomic/atomic-long.h:443
/v6.2-bzimage/./include/linux/atomic/atomic-instrumented.h:1781
/v6.2-bzimage/kernel/locking/mutex.c:171
/v6.2-bzimage/kernel/locking/mutex.c:285)
? __pfx_mutex_lock (/v6.2-bzimage/kernel/locking/mutex.c:282)
hci_power_on (/v6.2-bzimage/net/bluetooth/hci_core.c:485
/v6.2-bzimage/net/bluetooth/hci_core.c:984)
? __pfx_hci_power_on (/v6.2-bzimage/net/bluetooth/hci_core.c:969)
? read_word_at_a_time (/v6.2-bzimage/./include/asm-generic/rwonce.h:85)
? strscpy (/v6.2-bzimage/./arch/x86/include/asm/word-at-a-time.h:62
/v6.2-bzimage/lib/string.c:161)
process_one_work (/v6.2-bzimage/kernel/workqueue.c:2294)
worker_thread (/v6.2-bzimage/./include/linux/list.h:292
/v6.2-bzimage/kernel/workqueue.c:2437)
? __pfx_worker_thread (/v6.2-bzimage/kernel/workqueue.c:2379)
kthread (/v6.2-bzimage/kernel/kthread.c:376)
? __pfx_kthread (/v6.2-bzimage/kernel/kthread.c:331)
ret_from_fork (/v6.2-bzimage/arch/x86/entry/entry_64.S:314)
</TASK>
The buggy address belongs to the variable:
amp_init1+0x30/0x60
The buggy address belongs to the physical page:
page:000000003a157ec6 refcount:1 mapcount:0 mapping:0000000000000000 ia
flags: 0x200000000001000(reserved|node=0|zone=2)
raw: 0200000000001000 ffffea0005054688 ffffea0005054688 000000000000000
raw: 0000000000000000 0000000000000000 00000001ffffffff 000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffffffffaed1aa00: f9 f9 f9 f9 00 00 00 00 f9 f9 f9 f9 00 00 00 00
ffffffffaed1aa80: 00 00 00 00 f9 f9 f9 f9 00 00 00 00 00 00 00 00
>ffffffffaed1ab00: 00 f9 f9 f9 f9 f9 f9 f9 00 00 00 00 00 00 f9 f9
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
ata: sata_dwc_460ex: Fix crash due to OOB write
the driver uses libata's "tag" values from in various arrays.
Since the mentioned patch bumped the ATA_TAG_INTERNAL to 32,
the value of the SATA_DWC_QCMD_MAX needs to account for that.
Otherwise ATA_TAG_INTERNAL usage cause similar crashes like
this as reported by Tice Rex on the OpenWrt Forum and
reproduced (with symbols) here:
| BUG: Kernel NULL pointer dereference at 0x00000000
| Faulting instruction address: 0xc03ed4b8
| Oops: Kernel access of bad area, sig: 11 [#1]
| BE PAGE_SIZE=4K PowerPC 44x Platform
| CPU: 0 PID: 362 Comm: scsi_eh_1 Not tainted 5.4.163 #0
| NIP: c03ed4b8 LR: c03d27e8 CTR: c03ed36c
| REGS: cfa59950 TRAP: 0300 Not tainted (5.4.163)
| MSR: 00021000 <CE,ME> CR: 42000222 XER: 00000000
| DEAR: 00000000 ESR: 00000000
| GPR00: c03d27e8 cfa59a08 cfa55fe0 00000000 0fa46bc0 [...]
| [..]
| NIP [c03ed4b8] sata_dwc_qc_issue+0x14c/0x254
| LR [c03d27e8] ata_qc_issue+0x1c8/0x2dc
| Call Trace:
| [cfa59a08] [c003f4e0] __cancel_work_timer+0x124/0x194 (unreliable)
| [cfa59a78] [c03d27e8] ata_qc_issue+0x1c8/0x2dc
| [cfa59a98] [c03d2b3c] ata_exec_internal_sg+0x240/0x524
| [cfa59b08] [c03d2e98] ata_exec_internal+0x78/0xe0
| [cfa59b58] [c03d30fc] ata_read_log_page.part.38+0x1dc/0x204
| [cfa59bc8] [c03d324c] ata_identify_page_supported+0x68/0x130
| [...]
This is because sata_dwc_dma_xfer_complete() NULLs the
dma_pending's next neighbour "chan" (a *dma_chan struct) in
this '32' case right here (line ~735):
> hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
Then the next time, a dma gets issued; dma_dwc_xfer_setup() passes
the NULL'd hsdevp->chan to the dmaengine_slave_config() which then
causes the crash.
With this patch, SATA_DWC_QCMD_MAX is now set to ATA_MAX_QUEUE + 1.
This avoids the OOB. But please note, there was a worthwhile discussion
on what ATA_TAG_INTERNAL and ATA_MAX_QUEUE is. And why there should not
be a "fake" 33 command-long queue size.
Ideally, the dw driver should account for the ATA_TAG_INTERNAL.
In Damien Le Moal's words: "... having looked at the driver, it
is a bigger change than just faking a 33rd "tag" that is in fact
not a command tag at all."
BugLink: https://github.com/openwrt/openwrt/issues/9505 |
In the Linux kernel, the following vulnerability has been resolved:
io-wq: check for wq exit after adding new worker task_work
We check IO_WQ_BIT_EXIT before attempting to create a new worker, and
wq exit cancels pending work if we have any. But it's possible to have
a race between the two, where creation checks exit finding it not set,
but we're in the process of exiting. The exit side will cancel pending
creation task_work, but there's a gap where we add task_work after we've
canceled existing creations at exit time.
Fix this by checking the EXIT bit post adding the creation task_work.
If it's set, run the same cancelation that exit does. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: Remove clk_disable in mtk_iommu_remove
After the commit b34ea31fe013 ("iommu/mediatek: Always enable the clk on
resume"), the iommu clock is controlled by the runtime callback.
thus remove the clk control in the mtk_iommu_remove.
Otherwise, it will warning like:
echo 14018000.iommu > /sys/bus/platform/drivers/mtk-iommu/unbind
[ 51.413044] ------------[ cut here ]------------
[ 51.413648] vpp0_smi_iommu already disabled
[ 51.414233] WARNING: CPU: 2 PID: 157 at */v5.15-rc1/kernel/mediatek/
drivers/clk/clk.c:952 clk_core_disable+0xb0/0xb8
[ 51.417174] Hardware name: MT8195V/C(ENG) (DT)
[ 51.418635] pc : clk_core_disable+0xb0/0xb8
[ 51.419177] lr : clk_core_disable+0xb0/0xb8
...
[ 51.429375] Call trace:
[ 51.429694] clk_core_disable+0xb0/0xb8
[ 51.430193] clk_core_disable_lock+0x24/0x40
[ 51.430745] clk_disable+0x20/0x30
[ 51.431189] mtk_iommu_remove+0x58/0x118
[ 51.431705] platform_remove+0x28/0x60
[ 51.432197] device_release_driver_internal+0x110/0x1f0
[ 51.432873] device_driver_detach+0x18/0x28
[ 51.433418] unbind_store+0xd4/0x108
[ 51.433886] drv_attr_store+0x24/0x38
[ 51.434363] sysfs_kf_write+0x40/0x58
[ 51.434843] kernfs_fop_write_iter+0x164/0x1e0 |
In the Linux kernel, the following vulnerability has been resolved:
media: i2c: et8ek8: Don't strip remove function when driver is builtin
Using __exit for the remove function results in the remove callback
being discarded with CONFIG_VIDEO_ET8EK8=y. When such a device gets
unbound (e.g. using sysfs or hotplug), the driver is just removed
without the cleanup being performed. This results in resource leaks. Fix
it by compiling in the remove callback unconditionally.
This also fixes a W=1 modpost warning:
WARNING: modpost: drivers/media/i2c/et8ek8/et8ek8: section mismatch in reference: et8ek8_i2c_driver+0x10 (section: .data) -> et8ek8_remove (section: .exit.text) |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: prohibit deactivating all links
In the internal API this calls this is a WARN_ON, but that
should remain since internally we want to know about bugs
that may cause this. Prevent deactivating all links in the
debugfs write directly. |
In the Linux kernel, the following vulnerability has been resolved:
s390/dasd: protect device queue against concurrent access
In dasd_profile_start() the amount of requests on the device queue are
counted. The access to the device queue is unprotected against
concurrent access. With a lot of parallel I/O, especially with alias
devices enabled, the device queue can change while dasd_profile_start()
is accessing the queue. In the worst case this leads to a kernel panic
due to incorrect pointer accesses.
Fix this by taking the device lock before accessing the queue and
counting the requests. Additionally the check for a valid profile data
pointer can be done earlier to avoid unnecessary locking in a hot path. |
In the Linux kernel, the following vulnerability has been resolved:
cpufreq: schedutil: Use kobject release() method to free sugov_tunables
The struct sugov_tunables is protected by the kobject, so we can't free
it directly. Otherwise we would get a call trace like this:
ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x30
WARNING: CPU: 3 PID: 720 at lib/debugobjects.c:505 debug_print_object+0xb8/0x100
Modules linked in:
CPU: 3 PID: 720 Comm: a.sh Tainted: G W 5.14.0-rc1-next-20210715-yocto-standard+ #507
Hardware name: Marvell OcteonTX CN96XX board (DT)
pstate: 40400009 (nZcv daif +PAN -UAO -TCO BTYPE=--)
pc : debug_print_object+0xb8/0x100
lr : debug_print_object+0xb8/0x100
sp : ffff80001ecaf910
x29: ffff80001ecaf910 x28: ffff00011b10b8d0 x27: ffff800011043d80
x26: ffff00011a8f0000 x25: ffff800013cb3ff0 x24: 0000000000000000
x23: ffff80001142aa68 x22: ffff800011043d80 x21: ffff00010de46f20
x20: ffff800013c0c520 x19: ffff800011d8f5b0 x18: 0000000000000010
x17: 6e6968207473696c x16: 5f72656d6974203a x15: 6570797420746365
x14: 6a626f2029302065 x13: 303378302f307830 x12: 2b6e665f72656d69
x11: ffff8000124b1560 x10: ffff800012331520 x9 : ffff8000100ca6b0
x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 0000000000000001
x5 : ffff800011d8c000 x4 : ffff800011d8c740 x3 : 0000000000000000
x2 : ffff0001108301c0 x1 : ab3c90eedf9c0f00 x0 : 0000000000000000
Call trace:
debug_print_object+0xb8/0x100
__debug_check_no_obj_freed+0x1c0/0x230
debug_check_no_obj_freed+0x20/0x88
slab_free_freelist_hook+0x154/0x1c8
kfree+0x114/0x5d0
sugov_exit+0xbc/0xc0
cpufreq_exit_governor+0x44/0x90
cpufreq_set_policy+0x268/0x4a8
store_scaling_governor+0xe0/0x128
store+0xc0/0xf0
sysfs_kf_write+0x54/0x80
kernfs_fop_write_iter+0x128/0x1c0
new_sync_write+0xf0/0x190
vfs_write+0x2d4/0x478
ksys_write+0x74/0x100
__arm64_sys_write+0x24/0x30
invoke_syscall.constprop.0+0x54/0xe0
do_el0_svc+0x64/0x158
el0_svc+0x2c/0xb0
el0t_64_sync_handler+0xb0/0xb8
el0t_64_sync+0x198/0x19c
irq event stamp: 5518
hardirqs last enabled at (5517): [<ffff8000100cbd7c>] console_unlock+0x554/0x6c8
hardirqs last disabled at (5518): [<ffff800010fc0638>] el1_dbg+0x28/0xa0
softirqs last enabled at (5504): [<ffff8000100106e0>] __do_softirq+0x4d0/0x6c0
softirqs last disabled at (5483): [<ffff800010049548>] irq_exit+0x1b0/0x1b8
So split the original sugov_tunables_free() into two functions,
sugov_clear_global_tunables() is just used to clear the global_tunables
and the new sugov_tunables_free() is used as kobj_type::release to
release the sugov_tunables safely. |
In the Linux kernel, the following vulnerability has been resolved:
ipmi: ipmb: Add check devm_kasprintf() returned value
devm_kasprintf() can return a NULL pointer on failure but this
returned value is not checked. |