CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
mctp i2c: don't count unused / invalid keys for flow release
We're currently hitting the WARN_ON in mctp_i2c_flow_release:
if (midev->release_count > midev->i2c_lock_count) {
WARN_ONCE(1, "release count overflow");
This may be hit if we expire a flow before sending the first packet it
contains - as we will not be pairing the increment of release_count
(performed on flow release) with the i2c lock operation (only
performed on actual TX).
To fix this, only release a flow if we've encountered it previously (ie,
dev_flow_state does not indicate NEW), as we will mark the flow as
ACTIVE at the same time as accounting for the i2c lock operation. We
also need to add an INVALID flow state, to indicate when we've done the
release. |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix to guarantee persisting compressed blocks by CP
If data block in compressed cluster is not persisted with metadata
during checkpoint, after SPOR, the data may be corrupted, let's
guarantee to write compressed page by checkpoint. |
In the Linux kernel, the following vulnerability has been resolved:
net: mctp: take ownership of skb in mctp_local_output
Currently, mctp_local_output only takes ownership of skb on success, and
we may leak an skb if mctp_local_output fails in specific states; the
skb ownership isn't transferred until the actual output routing occurs.
Instead, make mctp_local_output free the skb on all error paths up to
the route action, so it always consumes the passed skb. |
In the Linux kernel, the following vulnerability has been resolved:
can: isotp: fix potential CAN frame reception race in isotp_rcv()
When receiving a CAN frame the current code logic does not consider
concurrently receiving processes which do not show up in real world
usage.
Ziyang Xuan writes:
The following syz problem is one of the scenarios. so->rx.len is
changed by isotp_rcv_ff() during isotp_rcv_cf(), so->rx.len equals
0 before alloc_skb() and equals 4096 after alloc_skb(). That will
trigger skb_over_panic() in skb_put().
=======================================================
CPU: 1 PID: 19 Comm: ksoftirqd/1 Not tainted 5.16.0-rc8-syzkaller #0
RIP: 0010:skb_panic+0x16c/0x16e net/core/skbuff.c:113
Call Trace:
<TASK>
skb_over_panic net/core/skbuff.c:118 [inline]
skb_put.cold+0x24/0x24 net/core/skbuff.c:1990
isotp_rcv_cf net/can/isotp.c:570 [inline]
isotp_rcv+0xa38/0x1e30 net/can/isotp.c:668
deliver net/can/af_can.c:574 [inline]
can_rcv_filter+0x445/0x8d0 net/can/af_can.c:635
can_receive+0x31d/0x580 net/can/af_can.c:665
can_rcv+0x120/0x1c0 net/can/af_can.c:696
__netif_receive_skb_one_core+0x114/0x180 net/core/dev.c:5465
__netif_receive_skb+0x24/0x1b0 net/core/dev.c:5579
Therefore we make sure the state changes and data structures stay
consistent at CAN frame reception time by adding a spin_lock in
isotp_rcv(). This fixes the issue reported by syzkaller but does not
affect real world operation. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Perform lockless command completion in abort path
While adding and removing the controller, the following call trace was
observed:
WARNING: CPU: 3 PID: 623596 at kernel/dma/mapping.c:532 dma_free_attrs+0x33/0x50
CPU: 3 PID: 623596 Comm: sh Kdump: loaded Not tainted 5.14.0-96.el9.x86_64 #1
RIP: 0010:dma_free_attrs+0x33/0x50
Call Trace:
qla2x00_async_sns_sp_done+0x107/0x1b0 [qla2xxx]
qla2x00_abort_srb+0x8e/0x250 [qla2xxx]
? ql_dbg+0x70/0x100 [qla2xxx]
__qla2x00_abort_all_cmds+0x108/0x190 [qla2xxx]
qla2x00_abort_all_cmds+0x24/0x70 [qla2xxx]
qla2x00_abort_isp_cleanup+0x305/0x3e0 [qla2xxx]
qla2x00_remove_one+0x364/0x400 [qla2xxx]
pci_device_remove+0x36/0xa0
__device_release_driver+0x17a/0x230
device_release_driver+0x24/0x30
pci_stop_bus_device+0x68/0x90
pci_stop_and_remove_bus_device_locked+0x16/0x30
remove_store+0x75/0x90
kernfs_fop_write_iter+0x11c/0x1b0
new_sync_write+0x11f/0x1b0
vfs_write+0x1eb/0x280
ksys_write+0x5f/0xe0
do_syscall_64+0x5c/0x80
? do_user_addr_fault+0x1d8/0x680
? do_syscall_64+0x69/0x80
? exc_page_fault+0x62/0x140
? asm_exc_page_fault+0x8/0x30
entry_SYSCALL_64_after_hwframe+0x44/0xae
The command was completed in the abort path during driver unload with a
lock held, causing the warning in abort path. Hence complete the command
without any lock held. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: emux: improve patch ioctl data validation
In load_data(), make the validation of and skipping over the main info
block match that in load_guspatch().
In load_guspatch(), add checking that the specified patch length matches
the actually supplied data, like load_data() already did. |
In the Linux kernel, the following vulnerability has been resolved:
fpga: m10bmc-sec: Fix probe rollback
Handle probe error rollbacks properly to avoid leaks. |
In the Linux kernel, the following vulnerability has been resolved:
block: RCU protect disk->conv_zones_bitmap
Ensure that a disk revalidation changing the conventional zones bitmap
of a disk does not cause invalid memory references when using the
disk_zone_is_conv() helper by RCU protecting the disk->conv_zones_bitmap
pointer.
disk_zone_is_conv() is modified to operate under the RCU read lock and
the function disk_set_conv_zones_bitmap() is added to update a disk
conv_zones_bitmap pointer using rcu_replace_pointer() with the disk
zone_wplugs_lock spinlock held.
disk_free_zone_resources() is modified to call
disk_update_zone_resources() with a NULL bitmap pointer to free the disk
conv_zones_bitmap. disk_set_conv_zones_bitmap() is also used in
disk_update_zone_resources() to set the new (revalidated) bitmap and
free the old one. |
In the Linux kernel, the following vulnerability has been resolved:
tty: goldfish: Fix free_irq() on remove
Pass the correct dev_id to free_irq() to fix this splat when the driver
is unbound:
WARNING: CPU: 0 PID: 30 at kernel/irq/manage.c:1895 free_irq
Trying to free already-free IRQ 65
Call Trace:
warn_slowpath_fmt
free_irq
goldfish_tty_remove
platform_remove
device_remove
device_release_driver_internal
device_driver_detach
unbind_store
drv_attr_store
... |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix adding block group to a reclaim list and the unused list during reclaim
There is a potential parallel list adding for retrying in
btrfs_reclaim_bgs_work and adding to the unused list. Since the block
group is removed from the reclaim list and it is on a relocation work,
it can be added into the unused list in parallel. When that happens,
adding it to the reclaim list will corrupt the list head and trigger
list corruption like below.
Fix it by taking fs_info->unused_bgs_lock.
[177.504][T2585409] BTRFS error (device nullb1): error relocating ch= unk 2415919104
[177.514][T2585409] list_del corruption. next->prev should be ff1100= 0344b119c0, but was ff11000377e87c70. (next=3Dff110002390cd9c0)
[177.529][T2585409] ------------[ cut here ]------------
[177.537][T2585409] kernel BUG at lib/list_debug.c:65!
[177.545][T2585409] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
[177.555][T2585409] CPU: 9 PID: 2585409 Comm: kworker/u128:2 Tainted: G W 6.10.0-rc5-kts #1
[177.568][T2585409] Hardware name: Supermicro SYS-520P-WTR/X12SPW-TF, BIOS 1.2 02/14/2022
[177.579][T2585409] Workqueue: events_unbound btrfs_reclaim_bgs_work[btrfs]
[177.589][T2585409] RIP: 0010:__list_del_entry_valid_or_report.cold+0x70/0x72
[177.624][T2585409] RSP: 0018:ff11000377e87a70 EFLAGS: 00010286
[177.633][T2585409] RAX: 000000000000006d RBX: ff11000344b119c0 RCX:0000000000000000
[177.644][T2585409] RDX: 000000000000006d RSI: 0000000000000008 RDI:ffe21c006efd0f40
[177.655][T2585409] RBP: ff110002e0509f78 R08: 0000000000000001 R09:ffe21c006efd0f08
[177.665][T2585409] R10: ff11000377e87847 R11: 0000000000000000 R12:ff110002390cd9c0
[177.676][T2585409] R13: ff11000344b119c0 R14: ff110002e0508000 R15:dffffc0000000000
[177.687][T2585409] FS: 0000000000000000(0000) GS:ff11000fec880000(0000) knlGS:0000000000000000
[177.700][T2585409] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[177.709][T2585409] CR2: 00007f06bc7b1978 CR3: 0000001021e86005 CR4:0000000000771ef0
[177.720][T2585409] DR0: 0000000000000000 DR1: 0000000000000000 DR2:0000000000000000
[177.731][T2585409] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:0000000000000400
[177.742][T2585409] PKRU: 55555554
[177.748][T2585409] Call Trace:
[177.753][T2585409] <TASK>
[177.759][T2585409] ? __die_body.cold+0x19/0x27
[177.766][T2585409] ? die+0x2e/0x50
[177.772][T2585409] ? do_trap+0x1ea/0x2d0
[177.779][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72
[177.788][T2585409] ? do_error_trap+0xa3/0x160
[177.795][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72
[177.805][T2585409] ? handle_invalid_op+0x2c/0x40
[177.812][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72
[177.820][T2585409] ? exc_invalid_op+0x2d/0x40
[177.827][T2585409] ? asm_exc_invalid_op+0x1a/0x20
[177.834][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72
[177.843][T2585409] btrfs_delete_unused_bgs+0x3d9/0x14c0 [btrfs]
There is a similar retry_list code in btrfs_delete_unused_bgs(), but it is
safe, AFAICS. Since the block group was in the unused list, the used bytes
should be 0 when it was added to the unused list. Then, it checks
block_group->{used,reserved,pinned} are still 0 under the
block_group->lock. So, they should be still eligible for the unused list,
not the reclaim list.
The reason it is safe there it's because because we're holding
space_info->groups_sem in write mode.
That means no other task can allocate from the block group, so while we
are at deleted_unused_bgs() it's not possible for other tasks to
allocate and deallocate extents from the block group, so it can't be
added to the unused list or the reclaim list by anyone else.
The bug can be reproduced by btrfs/166 after a few rounds. In practice
this can be hit when relocation cannot find more chunk space and ends
with ENOSPC. |
In the Linux kernel, the following vulnerability has been resolved:
x86/entry: Clear X86_FEATURE_SMAP when CONFIG_X86_SMAP=n
Commit
3c73b81a9164 ("x86/entry, selftests: Further improve user entry sanity checks")
added a warning if AC is set when in the kernel.
Commit
662a0221893a3d ("x86/entry: Fix AC assertion")
changed the warning to only fire if the CPU supports SMAP.
However, the warning can still trigger on a machine that supports SMAP
but where it's disabled in the kernel config and when running the
syscall_nt selftest, for example:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 49 at irqentry_enter_from_user_mode
CPU: 0 PID: 49 Comm: init Tainted: G T 5.15.0-rc4+ #98 e6202628ee053b4f310759978284bd8bb0ce6905
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
RIP: 0010:irqentry_enter_from_user_mode
...
Call Trace:
? irqentry_enter
? exc_general_protection
? asm_exc_general_protection
? asm_exc_general_protectio
IS_ENABLED(CONFIG_X86_SMAP) could be added to the warning condition, but
even this would not be enough in case SMAP is disabled at boot time with
the "nosmap" parameter.
To be consistent with "nosmap" behaviour, clear X86_FEATURE_SMAP when
!CONFIG_X86_SMAP.
Found using entry-fuzz + satrandconfig.
[ bp: Massage commit message. ] |
In the Linux kernel, the following vulnerability has been resolved:
net/tcp_ao: Don't leak ao_info on error-path
It seems I introduced it together with TCP_AO_CMDF_AO_REQUIRED, on
version 5 [1] of TCP-AO patches. Quite frustrative that having all these
selftests that I've written, running kmemtest & kcov was always in todo.
[1]: https://lore.kernel.org/netdev/20230215183335.800122-5-dima@arista.com/ |
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: mount fails with buffer overflow in strlen
Starting with kernel 5.11 built with CONFIG_FORTIFY_SOURCE mouting an
ocfs2 filesystem with either o2cb or pcmk cluster stack fails with the
trace below. Problem seems to be that strings for cluster stack and
cluster name are not guaranteed to be null terminated in the disk
representation, while strlcpy assumes that the source string is always
null terminated. This causes a read outside of the source string
triggering the buffer overflow detection.
detected buffer overflow in strlen
------------[ cut here ]------------
kernel BUG at lib/string.c:1149!
invalid opcode: 0000 [#1] SMP PTI
CPU: 1 PID: 910 Comm: mount.ocfs2 Not tainted 5.14.0-1-amd64 #1
Debian 5.14.6-2
RIP: 0010:fortify_panic+0xf/0x11
...
Call Trace:
ocfs2_initialize_super.isra.0.cold+0xc/0x18 [ocfs2]
ocfs2_fill_super+0x359/0x19b0 [ocfs2]
mount_bdev+0x185/0x1b0
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x454/0xa20
__x64_sys_mount+0x103/0x140
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae |
In the Linux kernel, the following vulnerability has been resolved:
net/smc: check smcd_v2_ext_offset when receiving proposal msg
When receiving proposal msg in server, the field smcd_v2_ext_offset in
proposal msg is from the remote client and can not be fully trusted.
Once the value of smcd_v2_ext_offset exceed the max value, there has
the chance to access wrong address, and crash may happen.
This patch checks the value of smcd_v2_ext_offset before using it. |
In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Handle CPU hotplug remove during sampling
CPU hotplug remove handling triggers the following function
call sequence:
CPUHP_AP_PERF_S390_SF_ONLINE --> s390_pmu_sf_offline_cpu()
...
CPUHP_AP_PERF_ONLINE --> perf_event_exit_cpu()
The s390 CPUMF sampling CPU hotplug handler invokes:
s390_pmu_sf_offline_cpu()
+--> cpusf_pmu_setup()
+--> setup_pmc_cpu()
+--> deallocate_buffers()
This function de-allocates all sampling data buffers (SDBs) allocated
for that CPU at event initialization. It also clears the
PMU_F_RESERVED bit. The CPU is gone and can not be sampled.
With the event still being active on the removed CPU, the CPU event
hotplug support in kernel performance subsystem triggers the
following function calls on the removed CPU:
perf_event_exit_cpu()
+--> perf_event_exit_cpu_context()
+--> __perf_event_exit_context()
+--> __perf_remove_from_context()
+--> event_sched_out()
+--> cpumsf_pmu_del()
+--> cpumsf_pmu_stop()
+--> hw_perf_event_update()
to stop and remove the event. During removal of the event, the
sampling device driver tries to read out the remaining samples from
the sample data buffers (SDBs). But they have already been freed
(and may have been re-assigned). This may lead to a use after free
situation in which case the samples are most likely invalid. In the
best case the memory has not been reassigned and still contains
valid data.
Remedy this situation and check if the CPU is still in reserved
state (bit PMU_F_RESERVED set). In this case the SDBs have not been
released an contain valid data. This is always the case when
the event is removed (and no CPU hotplug off occured).
If the PMU_F_RESERVED bit is not set, the SDB buffers are gone. |
In the Linux kernel, the following vulnerability has been resolved:
pmdomain: ti: Add a null pointer check to the omap_prm_domain_init
devm_kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity. |
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix cred leak in ceph_mds_check_access()
get_current_cred() increments the reference counter, but the
put_cred() call was missing. |
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Fix a null pointer crash in mtk_drm_crtc_finish_page_flip
It's possible that mtk_crtc->event is NULL in
mtk_drm_crtc_finish_page_flip().
pending_needs_vblank value is set by mtk_crtc->event, but in
mtk_drm_crtc_atomic_flush(), it's is not guarded by the same
lock in mtk_drm_finish_page_flip(), thus a race condition happens.
Consider the following case:
CPU1 CPU2
step 1:
mtk_drm_crtc_atomic_begin()
mtk_crtc->event is not null,
step 1:
mtk_drm_crtc_atomic_flush:
mtk_drm_crtc_update_config(
!!mtk_crtc->event)
step 2:
mtk_crtc_ddp_irq ->
mtk_drm_finish_page_flip:
lock
mtk_crtc->event set to null,
pending_needs_vblank set to false
unlock
pending_needs_vblank set to true,
step 2:
mtk_crtc_ddp_irq ->
mtk_drm_finish_page_flip called again,
pending_needs_vblank is still true
//null pointer
Instead of guarding the entire mtk_drm_crtc_atomic_flush(), it's more
efficient to just check if mtk_crtc->event is null before use. |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: deal with large GSO size
After the blamed commit below, the TCP sockets (and the MPTCP subflows)
can build egress packets larger than 64K. That exceeds the maximum DSS
data size, the length being misrepresent on the wire and the stream being
corrupted, as later observed on the receiver:
WARNING: CPU: 0 PID: 9696 at net/mptcp/protocol.c:705 __mptcp_move_skbs_from_subflow+0x2604/0x26e0
CPU: 0 PID: 9696 Comm: syz-executor.7 Not tainted 6.6.0-rc5-gcd8bdf563d46 #45
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
netlink: 8 bytes leftover after parsing attributes in process `syz-executor.4'.
RIP: 0010:__mptcp_move_skbs_from_subflow+0x2604/0x26e0 net/mptcp/protocol.c:705
RSP: 0018:ffffc90000006e80 EFLAGS: 00010246
RAX: ffffffff83e9f674 RBX: ffff88802f45d870 RCX: ffff888102ad0000
netlink: 8 bytes leftover after parsing attributes in process `syz-executor.4'.
RDX: 0000000080000303 RSI: 0000000000013908 RDI: 0000000000003908
RBP: ffffc90000007110 R08: ffffffff83e9e078 R09: 1ffff1100e548c8a
R10: dffffc0000000000 R11: ffffed100e548c8b R12: 0000000000013908
R13: dffffc0000000000 R14: 0000000000003908 R15: 000000000031cf29
FS: 00007f239c47e700(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f239c45cd78 CR3: 000000006a66c006 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
PKRU: 55555554
Call Trace:
<IRQ>
mptcp_data_ready+0x263/0xac0 net/mptcp/protocol.c:819
subflow_data_ready+0x268/0x6d0 net/mptcp/subflow.c:1409
tcp_data_queue+0x21a1/0x7a60 net/ipv4/tcp_input.c:5151
tcp_rcv_established+0x950/0x1d90 net/ipv4/tcp_input.c:6098
tcp_v6_do_rcv+0x554/0x12f0 net/ipv6/tcp_ipv6.c:1483
tcp_v6_rcv+0x2e26/0x3810 net/ipv6/tcp_ipv6.c:1749
ip6_protocol_deliver_rcu+0xd6b/0x1ae0 net/ipv6/ip6_input.c:438
ip6_input+0x1c5/0x470 net/ipv6/ip6_input.c:483
ipv6_rcv+0xef/0x2c0 include/linux/netfilter.h:304
__netif_receive_skb+0x1ea/0x6a0 net/core/dev.c:5532
process_backlog+0x353/0x660 net/core/dev.c:5974
__napi_poll+0xc6/0x5a0 net/core/dev.c:6536
net_rx_action+0x6a0/0xfd0 net/core/dev.c:6603
__do_softirq+0x184/0x524 kernel/softirq.c:553
do_softirq+0xdd/0x130 kernel/softirq.c:454
Address the issue explicitly bounding the maximum GSO size to what MPTCP
actually allows. |
In the Linux kernel, the following vulnerability has been resolved:
lib: alloc_tag_module_unload must wait for pending kfree_rcu calls
Ben Greear reports following splat:
------------[ cut here ]------------
net/netfilter/nf_nat_core.c:1114 module nf_nat func:nf_nat_register_fn has 256 allocated at module unload
WARNING: CPU: 1 PID: 10421 at lib/alloc_tag.c:168 alloc_tag_module_unload+0x22b/0x3f0
Modules linked in: nf_nat(-) btrfs ufs qnx4 hfsplus hfs minix vfat msdos fat
...
Hardware name: Default string Default string/SKYBAY, BIOS 5.12 08/04/2020
RIP: 0010:alloc_tag_module_unload+0x22b/0x3f0
codetag_unload_module+0x19b/0x2a0
? codetag_load_module+0x80/0x80
nf_nat module exit calls kfree_rcu on those addresses, but the free
operation is likely still pending by the time alloc_tag checks for leaks.
Wait for outstanding kfree_rcu operations to complete before checking
resolves this warning.
Reproducer:
unshare -n iptables-nft -t nat -A PREROUTING -p tcp
grep nf_nat /proc/allocinfo # will list 4 allocations
rmmod nft_chain_nat
rmmod nf_nat # will WARN.
[akpm@linux-foundation.org: add comment] |