| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: drop bad gso csum_start and offset in virtio_net_hdr
Tighten csum_start and csum_offset checks in virtio_net_hdr_to_skb
for GSO packets.
The function already checks that a checksum requested with
VIRTIO_NET_HDR_F_NEEDS_CSUM is in skb linear. But for GSO packets
this might not hold for segs after segmentation.
Syzkaller demonstrated to reach this warning in skb_checksum_help
offset = skb_checksum_start_offset(skb);
ret = -EINVAL;
if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
By injecting a TSO packet:
WARNING: CPU: 1 PID: 3539 at net/core/dev.c:3284 skb_checksum_help+0x3d0/0x5b0
ip_do_fragment+0x209/0x1b20 net/ipv4/ip_output.c:774
ip_finish_output_gso net/ipv4/ip_output.c:279 [inline]
__ip_finish_output+0x2bd/0x4b0 net/ipv4/ip_output.c:301
iptunnel_xmit+0x50c/0x930 net/ipv4/ip_tunnel_core.c:82
ip_tunnel_xmit+0x2296/0x2c70 net/ipv4/ip_tunnel.c:813
__gre_xmit net/ipv4/ip_gre.c:469 [inline]
ipgre_xmit+0x759/0xa60 net/ipv4/ip_gre.c:661
__netdev_start_xmit include/linux/netdevice.h:4850 [inline]
netdev_start_xmit include/linux/netdevice.h:4864 [inline]
xmit_one net/core/dev.c:3595 [inline]
dev_hard_start_xmit+0x261/0x8c0 net/core/dev.c:3611
__dev_queue_xmit+0x1b97/0x3c90 net/core/dev.c:4261
packet_snd net/packet/af_packet.c:3073 [inline]
The geometry of the bad input packet at tcp_gso_segment:
[ 52.003050][ T8403] skb len=12202 headroom=244 headlen=12093 tailroom=0
[ 52.003050][ T8403] mac=(168,24) mac_len=24 net=(192,52) trans=244
[ 52.003050][ T8403] shinfo(txflags=0 nr_frags=1 gso(size=1552 type=3 segs=0))
[ 52.003050][ T8403] csum(0x60000c7 start=199 offset=1536
ip_summed=3 complete_sw=0 valid=0 level=0)
Mitigate with stricter input validation.
csum_offset: for GSO packets, deduce the correct value from gso_type.
This is already done for USO. Extend it to TSO. Let UFO be:
udp[46]_ufo_fragment ignores these fields and always computes the
checksum in software.
csum_start: finding the real offset requires parsing to the transport
header. Do not add a parser, use existing segmentation parsing. Thanks
to SKB_GSO_DODGY, that also catches bad packets that are hw offloaded.
Again test both TSO and USO. Do not test UFO for the above reason, and
do not test UDP tunnel offload.
GSO packet are almost always CHECKSUM_PARTIAL. USO packets may be
CHECKSUM_NONE since commit 10154dbded6d6 ("udp: Allow GSO transmit
from devices with no checksum offload"), but then still these fields
are initialized correctly in udp4_hwcsum/udp6_hwcsum_outgoing. So no
need to test for ip_summed == CHECKSUM_PARTIAL first.
This revises an existing fix mentioned in the Fixes tag, which broke
small packets with GSO offload, as detected by kselftests. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix overflow in get_free_elt()
"tracing_map->next_elt" in get_free_elt() is at risk of overflowing.
Once it overflows, new elements can still be inserted into the tracing_map
even though the maximum number of elements (`max_elts`) has been reached.
Continuing to insert elements after the overflow could result in the
tracing_map containing "tracing_map->max_size" elements, leaving no empty
entries.
If any attempt is made to insert an element into a full tracing_map using
`__tracing_map_insert()`, it will cause an infinite loop with preemption
disabled, leading to a CPU hang problem.
Fix this by preventing any further increments to "tracing_map->next_elt"
once it reaches "tracing_map->max_elt". |
| In the Linux kernel, the following vulnerability has been resolved:
media: pci: ivtv: Add check for DMA map result
In case DMA fails, 'dma->SG_length' is 0. This value is later used to
access 'dma->SGarray[dma->SG_length - 1]', which will cause out of
bounds access.
Add check to return early on invalid value. Adjust warnings accordingly.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau: prime: fix refcount underflow
Calling nouveau_bo_ref() on a nouveau_bo without initializing it (and
hence the backing ttm_bo) leads to a refcount underflow.
Instead of calling nouveau_bo_ref() in the unwind path of
drm_gem_object_init(), clean things up manually.
(cherry picked from commit 1b93f3e89d03cfc576636e195466a0d728ad8de5) |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Fix array-index-out-of-bounds in diFree |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: Fix array index mistake in rtw89_sta_info_get_iter()
In rtw89_sta_info_get_iter() 'status->he_gi' is compared to array size.
But then 'rate->he_gi' is used as array index instead of 'status->he_gi'.
This can lead to go beyond array boundaries in case of 'rate->he_gi' is
not equal to 'status->he_gi' and is bigger than array size. Looks like
"copy-paste" mistake.
Fix this mistake by replacing 'rate->he_gi' with 'status->he_gi'.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
bna: adjust 'name' buf size of bna_tcb and bna_ccb structures
To have enough space to write all possible sprintf() args. Currently
'name' size is 16, but the first '%s' specifier may already need at
least 16 characters, since 'bnad->netdev->name' is used there.
For '%d' specifiers, assume that they require:
* 1 char for 'tx_id + tx_info->tcb[i]->id' sum, BNAD_MAX_TXQ_PER_TX is 8
* 2 chars for 'rx_id + rx_info->rx_ctrl[i].ccb->id', BNAD_MAX_RXP_PER_RX
is 16
And replace sprintf with snprintf.
Detected using the static analysis tool - Svace. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix infinite loop when replaying fast_commit
When doing fast_commit replay an infinite loop may occur due to an
uninitialized extent_status struct. ext4_ext_determine_insert_hole() does
not detect the replay and calls ext4_es_find_extent_range(), which will
return immediately without initializing the 'es' variable.
Because 'es' contains garbage, an integer overflow may happen causing an
infinite loop in this function, easily reproducible using fstest generic/039.
This commit fixes this issue by unconditionally initializing the structure
in function ext4_es_find_extent_range().
Thanks to Zhang Yi, for figuring out the real problem! |
| In the Linux kernel, the following vulnerability has been resolved:
net: missing check virtio
Two missing check in virtio_net_hdr_to_skb() allowed syzbot
to crash kernels again
1. After the skb_segment function the buffer may become non-linear
(nr_frags != 0), but since the SKBTX_SHARED_FRAG flag is not set anywhere
the __skb_linearize function will not be executed, then the buffer will
remain non-linear. Then the condition (offset >= skb_headlen(skb))
becomes true, which causes WARN_ON_ONCE in skb_checksum_help.
2. The struct sk_buff and struct virtio_net_hdr members must be
mathematically related.
(gso_size) must be greater than (needed) otherwise WARN_ON_ONCE.
(remainder) must be greater than (needed) otherwise WARN_ON_ONCE.
(remainder) may be 0 if division is without remainder.
offset+2 (4191) > skb_headlen() (1116)
WARNING: CPU: 1 PID: 5084 at net/core/dev.c:3303 skb_checksum_help+0x5e2/0x740 net/core/dev.c:3303
Modules linked in:
CPU: 1 PID: 5084 Comm: syz-executor336 Not tainted 6.7.0-rc3-syzkaller-00014-gdf60cee26a2e #0
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 11/10/2023
RIP: 0010:skb_checksum_help+0x5e2/0x740 net/core/dev.c:3303
Code: 89 e8 83 e0 07 83 c0 03 38 d0 7c 08 84 d2 0f 85 52 01 00 00 44 89 e2 2b 53 74 4c 89 ee 48 c7 c7 40 57 e9 8b e8 af 8f dd f8 90 <0f> 0b 90 90 e9 87 fe ff ff e8 40 0f 6e f9 e9 4b fa ff ff 48 89 ef
RSP: 0018:ffffc90003a9f338 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff888025125780 RCX: ffffffff814db209
RDX: ffff888015393b80 RSI: ffffffff814db216 RDI: 0000000000000001
RBP: ffff8880251257f4 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: 000000000000045c
R13: 000000000000105f R14: ffff8880251257f0 R15: 000000000000105d
FS: 0000555555c24380(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000002000f000 CR3: 0000000023151000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ip_do_fragment+0xa1b/0x18b0 net/ipv4/ip_output.c:777
ip_fragment.constprop.0+0x161/0x230 net/ipv4/ip_output.c:584
ip_finish_output_gso net/ipv4/ip_output.c:286 [inline]
__ip_finish_output net/ipv4/ip_output.c:308 [inline]
__ip_finish_output+0x49c/0x650 net/ipv4/ip_output.c:295
ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323
NF_HOOK_COND include/linux/netfilter.h:303 [inline]
ip_output+0x13b/0x2a0 net/ipv4/ip_output.c:433
dst_output include/net/dst.h:451 [inline]
ip_local_out+0xaf/0x1a0 net/ipv4/ip_output.c:129
iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82
ipip6_tunnel_xmit net/ipv6/sit.c:1034 [inline]
sit_tunnel_xmit+0xed2/0x28f0 net/ipv6/sit.c:1076
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3545 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3561
__dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4346
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
packet_xmit+0x257/0x380 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3087 [inline]
packet_sendmsg+0x24ca/0x5240 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0xd5/0x180 net/socket.c:745
__sys_sendto+0x255/0x340 net/socket.c:2190
__do_sys_sendto net/socket.c:2202 [inline]
__se_sys_sendto net/socket.c:2198 [inline]
__x64_sys_sendto+0xe0/0x1b0 net/socket.c:2198
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x40/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Found by Linux Verification Center (linuxtesting.org) with Syzkaller |
| DISPUTE NOTE: this issue does not pose a security risk as it (according to analysis by the original software developer, NLnet Labs) falls within the expected functionality and security controls of the application. Red Hat has made a claim that there is a security risk within Red Hat products. NLnet Labs has no further information about the claim, and suggests that affected Red Hat customers refer to available Red Hat documentation or support channels. ORIGINAL DESCRIPTION: A heap-buffer-overflow flaw was found in the cfg_mark_ports function within Unbound's config_file.c, which can lead to memory corruption. This issue could allow an attacker with local access to provide specially crafted input, potentially causing the application to crash or allowing arbitrary code execution. This could result in a denial of service or unauthorized actions on the system. |
| In the Elliptic package 6.5.6 for Node.js, ECDSA signature malleability occurs because there is a missing check for whether the leading bit of r and s is zero. |
| An integer overflow vulnerability exists in the Compound Document Binary File format parser of v1.14.52 of the GNOME Project G Structured File Library (libgsf). A specially crafted file can result in an integer overflow that allows for a heap-based buffer overflow when processing the sector allocation table. This can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| Asterisk is an open source private branch exchange (PBX) and telephony toolkit. Prior to asterisk versions 18.24.2, 20.9.2, and 21.4.2 and certified-asterisk versions 18.9-cert11 and 20.7-cert2, an AMI user with `write=originate` may change all configuration files in the `/etc/asterisk/` directory. This occurs because they are able to curl remote files and write them to disk, but are also able to append to existing files using the `FILE` function inside the `SET` application. This issue may result in privilege escalation, remote code execution and/or blind server-side request forgery with arbitrary protocol. Asterisk versions 18.24.2, 20.9.2, and 21.4.2 and certified-asterisk versions 18.9-cert11 and 20.7-cert2 contain a fix for this issue. |
| The researcher is showing that it is possible to leak a small amount of Zabbix Server memory using an out of bounds read in src/libs/zbxmedia/email.c |
| The researcher is showing that due to the way the SNMP trap log is parsed, an attacker can craft an SNMP trap with additional lines of information and have forged data show in the Zabbix UI. This attack requires SNMP auth to be off and/or the attacker to know the community/auth details. The attack requires an SNMP item to be configured as text on the target host. |
| The HttpRequest object allows to get the HTTP headers from the server's response after sending the request. The problem is that the returned strings are created directly from the data returned by the server and are not correctly encoded for JavaScript. This allows to create internal strings that can be used to access hidden properties of objects. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: check dot and dotdot of dx_root before making dir indexed
Syzbot reports a issue as follows:
============================================
BUG: unable to handle page fault for address: ffffed11022e24fe
PGD 23ffee067 P4D 23ffee067 PUD 0
Oops: Oops: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 0 PID: 5079 Comm: syz-executor306 Not tainted 6.10.0-rc5-g55027e689933 #0
Call Trace:
<TASK>
make_indexed_dir+0xdaf/0x13c0 fs/ext4/namei.c:2341
ext4_add_entry+0x222a/0x25d0 fs/ext4/namei.c:2451
ext4_rename fs/ext4/namei.c:3936 [inline]
ext4_rename2+0x26e5/0x4370 fs/ext4/namei.c:4214
[...]
============================================
The immediate cause of this problem is that there is only one valid dentry
for the block to be split during do_split, so split==0 results in out of
bounds accesses to the map triggering the issue.
do_split
unsigned split
dx_make_map
count = 1
split = count/2 = 0;
continued = hash2 == map[split - 1].hash;
---> map[4294967295]
The maximum length of a filename is 255 and the minimum block size is 1024,
so it is always guaranteed that the number of entries is greater than or
equal to 2 when do_split() is called.
But syzbot's crafted image has no dot and dotdot in dir, and the dentry
distribution in dirblock is as follows:
bus dentry1 hole dentry2 free
|xx--|xx-------------|...............|xx-------------|...............|
0 12 (8+248)=256 268 256 524 (8+256)=264 788 236 1024
So when renaming dentry1 increases its name_len length by 1, neither hole
nor free is sufficient to hold the new dentry, and make_indexed_dir() is
called.
In make_indexed_dir() it is assumed that the first two entries of the
dirblock must be dot and dotdot, so bus and dentry1 are left in dx_root
because they are treated as dot and dotdot, and only dentry2 is moved
to the new leaf block. That's why count is equal to 1.
Therefore add the ext4_check_dx_root() helper function to add more sanity
checks to dot and dotdot before starting the conversion to avoid the above
issue. |
| In the Linux kernel, the following vulnerability has been resolved:
dev/parport: fix the array out-of-bounds risk
Fixed array out-of-bounds issues caused by sprintf
by replacing it with snprintf for safer data copying,
ensuring the destination buffer is not overflowed.
Below is the stack trace I encountered during the actual issue:
[ 66.575408s] [pid:5118,cpu4,QThread,4]Kernel panic - not syncing: stack-protector:
Kernel stack is corrupted in: do_hardware_base_addr+0xcc/0xd0 [parport]
[ 66.575408s] [pid:5118,cpu4,QThread,5]CPU: 4 PID: 5118 Comm:
QThread Tainted: G S W O 5.10.97-arm64-desktop #7100.57021.2
[ 66.575439s] [pid:5118,cpu4,QThread,6]TGID: 5087 Comm: EFileApp
[ 66.575439s] [pid:5118,cpu4,QThread,7]Hardware name: HUAWEI HUAWEI QingYun
PGUX-W515x-B081/SP1PANGUXM, BIOS 1.00.07 04/29/2024
[ 66.575439s] [pid:5118,cpu4,QThread,8]Call trace:
[ 66.575469s] [pid:5118,cpu4,QThread,9] dump_backtrace+0x0/0x1c0
[ 66.575469s] [pid:5118,cpu4,QThread,0] show_stack+0x14/0x20
[ 66.575469s] [pid:5118,cpu4,QThread,1] dump_stack+0xd4/0x10c
[ 66.575500s] [pid:5118,cpu4,QThread,2] panic+0x1d8/0x3bc
[ 66.575500s] [pid:5118,cpu4,QThread,3] __stack_chk_fail+0x2c/0x38
[ 66.575500s] [pid:5118,cpu4,QThread,4] do_hardware_base_addr+0xcc/0xd0 [parport] |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Update log->page_{mask,bits} if log->page_size changed
If an NTFS file system is mounted to another system with different
PAGE_SIZE from the original system, log->page_size will change in
log_replay(), but log->page_{mask,bits} don't change correspondingly.
This will cause a panic because "u32 bytes = log->page_size - page_off"
will get a negative value in the later read_log_page(). |
| In the Linux kernel, the following vulnerability has been resolved:
kobject_uevent: Fix OOB access within zap_modalias_env()
zap_modalias_env() wrongly calculates size of memory block to move, so
will cause OOB memory access issue if variable MODALIAS is not the last
one within its @env parameter, fixed by correcting size to memmove. |