CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
can: rockchip: rkcanfd_handle_rx_fifo_overflow_int(): bail out if skb cannot be allocated
Fix NULL pointer check in rkcanfd_handle_rx_fifo_overflow_int() to
bail out if skb cannot be allocated. |
In the Linux kernel, the following vulnerability has been resolved:
can: etas_es58x: fix potential NULL pointer dereference on udev->serial
The driver assumed that es58x_dev->udev->serial could never be NULL.
While this is true on commercially available devices, an attacker
could spoof the device identity providing a NULL USB serial number.
That would trigger a NULL pointer dereference.
Add a check on es58x_dev->udev->serial before accessing it. |
In the Linux kernel, the following vulnerability has been resolved:
iommu: Fix potential memory leak in iopf_queue_remove_device()
The iopf_queue_remove_device() helper removes a device from the per-iommu
iopf queue when PRI is disabled on the device. It responds to all
outstanding iopf's with an IOMMU_PAGE_RESP_INVALID code and detaches the
device from the queue.
However, it fails to release the group structure that represents a group
of iopf's awaiting for a response after responding to the hardware. This
can cause a memory leak if iopf_queue_remove_device() is called with
pending iopf's.
Fix it by calling iopf_free_group() after the iopf group is responded. |
In the Linux kernel, the following vulnerability has been resolved:
ptp: vmclock: Add .owner to vmclock_miscdev_fops
Without the .owner field, the module can be unloaded while /dev/vmclock0
is open, leading to an oops. |
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: fix possible overflow in DPE length check
Originally, it was possible for the DPE length check to overflow if
wDatagramIndex + wDatagramLength > U16_MAX. This could lead to an OoB
read.
Move the wDatagramIndex term to the other side of the inequality.
An existing condition ensures that wDatagramIndex < urb->actual_length. |
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: use static NDP16 location in URB
Original code allowed for the start of NDP16 to be anywhere within the
URB based on the `wNdpIndex` value in NTH16. Only the start position of
NDP16 was checked, so it was possible for even the fixed-length part
of NDP16 to extend past the end of URB, leading to an out-of-bounds
read.
On iOS devices, the NDP16 header always directly follows NTH16. Rely on
and check for this specific format.
This, along with NCM-specific minimal URB length check that already
exists, will ensure that the fixed-length part of NDP16 plus a set
amount of DPEs fit within the URB.
Note that this commit alone does not fully address the OoB read.
The limit on the amount of DPEs needs to be enforced separately. |
In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: fix DPE OoB read
Fix an out-of-bounds DPE read, limit the number of processed DPEs to
the amount that fits into the fixed-size NDP16 header. |
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix memory leak in ceph_mds_auth_match()
We now free the temporary target path substring allocation on every
possible branch, instead of omitting the default branch. In some
cases, a memory leak occured, which could rapidly crash the system
(depending on how many file accesses were attempted).
This was detected in production because it caused a continuous memory
growth, eventually triggering kernel OOM and completely hard-locking
the kernel.
Relevant kmemleak stacktrace:
unreferenced object 0xffff888131e69900 (size 128):
comm "git", pid 66104, jiffies 4295435999
hex dump (first 32 bytes):
76 6f 6c 75 6d 65 73 2f 63 6f 6e 74 61 69 6e 65 volumes/containe
72 73 2f 67 69 74 65 61 2f 67 69 74 65 61 2f 67 rs/gitea/gitea/g
backtrace (crc 2f3bb450):
[<ffffffffaa68fb49>] __kmalloc_noprof+0x359/0x510
[<ffffffffc32bf1df>] ceph_mds_check_access+0x5bf/0x14e0 [ceph]
[<ffffffffc3235722>] ceph_open+0x312/0xd80 [ceph]
[<ffffffffaa7dd786>] do_dentry_open+0x456/0x1120
[<ffffffffaa7e3729>] vfs_open+0x79/0x360
[<ffffffffaa832875>] path_openat+0x1de5/0x4390
[<ffffffffaa834fcc>] do_filp_open+0x19c/0x3c0
[<ffffffffaa7e44a1>] do_sys_openat2+0x141/0x180
[<ffffffffaa7e4945>] __x64_sys_open+0xe5/0x1a0
[<ffffffffac2cc2f7>] do_syscall_64+0xb7/0x210
[<ffffffffac400130>] entry_SYSCALL_64_after_hwframe+0x77/0x7f
It can be triggered by mouting a subdirectory of a CephFS filesystem,
and then trying to access files on this subdirectory with an auth token
using a path-scoped capability:
$ ceph auth get client.services
[client.services]
key = REDACTED
caps mds = "allow rw fsname=cephfs path=/volumes/"
caps mon = "allow r fsname=cephfs"
caps osd = "allow rw tag cephfs data=cephfs"
$ cat /proc/self/mounts
services@[REDACTED].cephfs=/volumes/containers /ceph/containers ceph rw,noatime,name=services,secret=<hidden>,ms_mode=prefer-crc,mount_timeout=300,acl,mon_addr=[REDACTED]:3300,recover_session=clean 0 0
$ seq 1 1000000 | xargs -P32 --replace={} touch /ceph/containers/file-{} && \
seq 1 1000000 | xargs -P32 --replace={} cat /ceph/containers/file-{}
[ idryomov: combine if statements, rename rc to path_matched and make
it a bool, formatting ] |
In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries/iommu: Don't unset window if it was never set
On pSeries, when user attempts to use the same vfio container used by
different iommu group, the spapr_tce_set_window() returns -EPERM
and the subsequent cleanup leads to the below crash.
Kernel attempted to read user page (308) - exploit attempt?
BUG: Kernel NULL pointer dereference on read at 0x00000308
Faulting instruction address: 0xc0000000001ce358
Oops: Kernel access of bad area, sig: 11 [#1]
NIP: c0000000001ce358 LR: c0000000001ce05c CTR: c00000000005add0
<snip>
NIP [c0000000001ce358] spapr_tce_unset_window+0x3b8/0x510
LR [c0000000001ce05c] spapr_tce_unset_window+0xbc/0x510
Call Trace:
spapr_tce_unset_window+0xbc/0x510 (unreliable)
tce_iommu_attach_group+0x24c/0x340 [vfio_iommu_spapr_tce]
vfio_container_attach_group+0xec/0x240 [vfio]
vfio_group_fops_unl_ioctl+0x548/0xb00 [vfio]
sys_ioctl+0x754/0x1580
system_call_exception+0x13c/0x330
system_call_vectored_common+0x15c/0x2ec
<snip>
--- interrupt: 3000
Fix this by having null check for the tbl passed to the
spapr_tce_unset_window(). |
In the Linux kernel, the following vulnerability has been resolved:
gfs2: Truncate address space when flipping GFS2_DIF_JDATA flag
Truncate an inode's address space when flipping the GFS2_DIF_JDATA flag:
depending on that flag, the pages in the address space will either use
buffer heads or iomap_folio_state structs, and we cannot mix the two. |
In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Ensure job pointer is set to NULL after job completion
After a job completes, the corresponding pointer in the device must
be set to NULL. Failing to do so triggers a warning when unloading
the driver, as it appears the job is still active. To prevent this,
assign the job pointer to NULL after completing the job, indicating
the job has finished. |
In the Linux kernel, the following vulnerability has been resolved:
mm: clear uffd-wp PTE/PMD state on mremap()
When mremap()ing a memory region previously registered with userfaultfd as
write-protected but without UFFD_FEATURE_EVENT_REMAP, an inconsistency in
flag clearing leads to a mismatch between the vma flags (which have
uffd-wp cleared) and the pte/pmd flags (which do not have uffd-wp
cleared). This mismatch causes a subsequent mprotect(PROT_WRITE) to
trigger a warning in page_table_check_pte_flags() due to setting the pte
to writable while uffd-wp is still set.
Fix this by always explicitly clearing the uffd-wp pte/pmd flags on any
such mremap() so that the values are consistent with the existing clearing
of VM_UFFD_WP. Be careful to clear the logical flag regardless of its
physical form; a PTE bit, a swap PTE bit, or a PTE marker. Cover PTE,
huge PMD and hugetlb paths. |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: dell-uart-backlight: fix serdev race
The dell_uart_bl_serdev_probe() function calls devm_serdev_device_open()
before setting the client ops via serdev_device_set_client_ops(). This
ordering can trigger a NULL pointer dereference in the serdev controller's
receive_buf handler, as it assumes serdev->ops is valid when
SERPORT_ACTIVE is set.
This is similar to the issue fixed in commit 5e700b384ec1
("platform/chrome: cros_ec_uart: properly fix race condition") where
devm_serdev_device_open() was called before fully initializing the
device.
Fix the race by ensuring client ops are set before enabling the port via
devm_serdev_device_open().
Note, serdev_device_set_baudrate() and serdev_device_set_flow_control()
calls should be after the devm_serdev_device_open() call. |
In the Linux kernel, the following vulnerability has been resolved:
net: sched: fix ets qdisc OOB Indexing
Haowei Yan <g1042620637@gmail.com> found that ets_class_from_arg() can
index an Out-Of-Bound class in ets_class_from_arg() when passed clid of
0. The overflow may cause local privilege escalation.
[ 18.852298] ------------[ cut here ]------------
[ 18.853271] UBSAN: array-index-out-of-bounds in net/sched/sch_ets.c:93:20
[ 18.853743] index 18446744073709551615 is out of range for type 'ets_class [16]'
[ 18.854254] CPU: 0 UID: 0 PID: 1275 Comm: poc Not tainted 6.12.6-dirty #17
[ 18.854821] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 18.856532] Call Trace:
[ 18.857441] <TASK>
[ 18.858227] dump_stack_lvl+0xc2/0xf0
[ 18.859607] dump_stack+0x10/0x20
[ 18.860908] __ubsan_handle_out_of_bounds+0xa7/0xf0
[ 18.864022] ets_class_change+0x3d6/0x3f0
[ 18.864322] tc_ctl_tclass+0x251/0x910
[ 18.864587] ? lock_acquire+0x5e/0x140
[ 18.865113] ? __mutex_lock+0x9c/0xe70
[ 18.866009] ? __mutex_lock+0xa34/0xe70
[ 18.866401] rtnetlink_rcv_msg+0x170/0x6f0
[ 18.866806] ? __lock_acquire+0x578/0xc10
[ 18.867184] ? __pfx_rtnetlink_rcv_msg+0x10/0x10
[ 18.867503] netlink_rcv_skb+0x59/0x110
[ 18.867776] rtnetlink_rcv+0x15/0x30
[ 18.868159] netlink_unicast+0x1c3/0x2b0
[ 18.868440] netlink_sendmsg+0x239/0x4b0
[ 18.868721] ____sys_sendmsg+0x3e2/0x410
[ 18.869012] ___sys_sendmsg+0x88/0xe0
[ 18.869276] ? rseq_ip_fixup+0x198/0x260
[ 18.869563] ? rseq_update_cpu_node_id+0x10a/0x190
[ 18.869900] ? trace_hardirqs_off+0x5a/0xd0
[ 18.870196] ? syscall_exit_to_user_mode+0xcc/0x220
[ 18.870547] ? do_syscall_64+0x93/0x150
[ 18.870821] ? __memcg_slab_free_hook+0x69/0x290
[ 18.871157] __sys_sendmsg+0x69/0xd0
[ 18.871416] __x64_sys_sendmsg+0x1d/0x30
[ 18.871699] x64_sys_call+0x9e2/0x2670
[ 18.871979] do_syscall_64+0x87/0x150
[ 18.873280] ? do_syscall_64+0x93/0x150
[ 18.874742] ? lock_release+0x7b/0x160
[ 18.876157] ? do_user_addr_fault+0x5ce/0x8f0
[ 18.877833] ? irqentry_exit_to_user_mode+0xc2/0x210
[ 18.879608] ? irqentry_exit+0x77/0xb0
[ 18.879808] ? clear_bhb_loop+0x15/0x70
[ 18.880023] ? clear_bhb_loop+0x15/0x70
[ 18.880223] ? clear_bhb_loop+0x15/0x70
[ 18.880426] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 18.880683] RIP: 0033:0x44a957
[ 18.880851] Code: ff ff e8 fc 00 00 00 66 2e 0f 1f 84 00 00 00 00 00 66 90 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 8974 24 10
[ 18.881766] RSP: 002b:00007ffcdd00fad8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
[ 18.882149] RAX: ffffffffffffffda RBX: 00007ffcdd010db8 RCX: 000000000044a957
[ 18.882507] RDX: 0000000000000000 RSI: 00007ffcdd00fb70 RDI: 0000000000000003
[ 18.885037] RBP: 00007ffcdd010bc0 R08: 000000000703c770 R09: 000000000703c7c0
[ 18.887203] R10: 0000000000000080 R11: 0000000000000246 R12: 0000000000000001
[ 18.888026] R13: 00007ffcdd010da8 R14: 00000000004ca7d0 R15: 0000000000000001
[ 18.888395] </TASK>
[ 18.888610] ---[ end trace ]--- |
In the Linux kernel, the following vulnerability has been resolved:
scsi: storvsc: Ratelimit warning logs to prevent VM denial of service
If there's a persistent error in the hypervisor, the SCSI warning for
failed I/O can flood the kernel log and max out CPU utilization,
preventing troubleshooting from the VM side. Ratelimit the warning so
it doesn't DoS the VM. |
In the Linux kernel, the following vulnerability has been resolved:
USB: serial: quatech2: fix null-ptr-deref in qt2_process_read_urb()
This patch addresses a null-ptr-deref in qt2_process_read_urb() due to
an incorrect bounds check in the following:
if (newport > serial->num_ports) {
dev_err(&port->dev,
"%s - port change to invalid port: %i\n",
__func__, newport);
break;
}
The condition doesn't account for the valid range of the serial->port
buffer, which is from 0 to serial->num_ports - 1. When newport is equal
to serial->num_ports, the assignment of "port" in the
following code is out-of-bounds and NULL:
serial_priv->current_port = newport;
port = serial->port[serial_priv->current_port];
The fix checks if newport is greater than or equal to serial->num_ports
indicating it is out-of-bounds. |
In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Assign job pointer to NULL before signaling the fence
In commit e4b5ccd392b9 ("drm/v3d: Ensure job pointer is set to NULL
after job completion"), we introduced a change to assign the job pointer
to NULL after completing a job, indicating job completion.
However, this approach created a race condition between the DRM
scheduler workqueue and the IRQ execution thread. As soon as the fence is
signaled in the IRQ execution thread, a new job starts to be executed.
This results in a race condition where the IRQ execution thread sets the
job pointer to NULL simultaneously as the `run_job()` function assigns
a new job to the pointer.
This race condition can lead to a NULL pointer dereference if the IRQ
execution thread sets the job pointer to NULL after `run_job()` assigns
it to the new job. When the new job completes and the GPU emits an
interrupt, `v3d_irq()` is triggered, potentially causing a crash.
[ 466.310099] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000c0
[ 466.318928] Mem abort info:
[ 466.321723] ESR = 0x0000000096000005
[ 466.325479] EC = 0x25: DABT (current EL), IL = 32 bits
[ 466.330807] SET = 0, FnV = 0
[ 466.333864] EA = 0, S1PTW = 0
[ 466.337010] FSC = 0x05: level 1 translation fault
[ 466.341900] Data abort info:
[ 466.344783] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 466.350285] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 466.355350] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 466.360677] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000089772000
[ 466.367140] [00000000000000c0] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
[ 466.375875] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
[ 466.382163] Modules linked in: rfcomm snd_seq_dummy snd_hrtimer snd_seq snd_seq_device algif_hash algif_skcipher af_alg bnep binfmt_misc vc4 snd_soc_hdmi_codec drm_display_helper cec brcmfmac_wcc spidev rpivid_hevc(C) drm_client_lib brcmfmac hci_uart drm_dma_helper pisp_be btbcm brcmutil snd_soc_core aes_ce_blk v4l2_mem2mem bluetooth aes_ce_cipher snd_compress videobuf2_dma_contig ghash_ce cfg80211 gf128mul snd_pcm_dmaengine videobuf2_memops ecdh_generic sha2_ce ecc videobuf2_v4l2 snd_pcm v3d sha256_arm64 rfkill videodev snd_timer sha1_ce libaes gpu_sched snd videobuf2_common sha1_generic drm_shmem_helper mc rp1_pio drm_kms_helper raspberrypi_hwmon spi_bcm2835 gpio_keys i2c_brcmstb rp1 raspberrypi_gpiomem rp1_mailbox rp1_adc nvmem_rmem uio_pdrv_genirq uio i2c_dev drm ledtrig_pattern drm_panel_orientation_quirks backlight fuse dm_mod ip_tables x_tables ipv6
[ 466.458429] CPU: 0 UID: 1000 PID: 2008 Comm: chromium Tainted: G C 6.13.0-v8+ #18
[ 466.467336] Tainted: [C]=CRAP
[ 466.470306] Hardware name: Raspberry Pi 5 Model B Rev 1.0 (DT)
[ 466.476157] pstate: 404000c9 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 466.483143] pc : v3d_irq+0x118/0x2e0 [v3d]
[ 466.487258] lr : __handle_irq_event_percpu+0x60/0x228
[ 466.492327] sp : ffffffc080003ea0
[ 466.495646] x29: ffffffc080003ea0 x28: ffffff80c0c94200 x27: 0000000000000000
[ 466.502807] x26: ffffffd08dd81d7b x25: ffffff80c0c94200 x24: ffffff8003bdc200
[ 466.509969] x23: 0000000000000001 x22: 00000000000000a7 x21: 0000000000000000
[ 466.517130] x20: ffffff8041bb0000 x19: 0000000000000001 x18: 0000000000000000
[ 466.524291] x17: ffffffafadfb0000 x16: ffffffc080000000 x15: 0000000000000000
[ 466.531452] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
[ 466.538613] x11: 0000000000000000 x10: 0000000000000000 x9 : ffffffd08c527eb0
[ 466.545777] x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
[ 466.552941] x5 : ffffffd08c4100d0 x4 : ffffffafadfb0000 x3 : ffffffc080003f70
[ 466.560102] x2 : ffffffc0829e8058 x1 : 0000000000000001 x0 : 0000000000000000
[ 466.567263] Call trace:
[ 466.569711] v3d_irq+0x118/0x2e0 [v3d] (P)
[ 466.
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: lenovo-yoga-tab2-pro-1380-fastcharger: fix serdev race
The yt2_1380_fc_serdev_probe() function calls devm_serdev_device_open()
before setting the client ops via serdev_device_set_client_ops(). This
ordering can trigger a NULL pointer dereference in the serdev controller's
receive_buf handler, as it assumes serdev->ops is valid when
SERPORT_ACTIVE is set.
This is similar to the issue fixed in commit 5e700b384ec1
("platform/chrome: cros_ec_uart: properly fix race condition") where
devm_serdev_device_open() was called before fully initializing the
device.
Fix the race by ensuring client ops are set before enabling the port via
devm_serdev_device_open().
Note, serdev_device_set_baudrate() and serdev_device_set_flow_control()
calls should be after the devm_serdev_device_open() call. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix bpf_sk_select_reuseport() memory leak
As pointed out in the original comment, lookup in sockmap can return a TCP
ESTABLISHED socket. Such TCP socket may have had SO_ATTACH_REUSEPORT_EBPF
set before it was ESTABLISHED. In other words, a non-NULL sk_reuseport_cb
does not imply a non-refcounted socket.
Drop sk's reference in both error paths.
unreferenced object 0xffff888101911800 (size 2048):
comm "test_progs", pid 44109, jiffies 4297131437
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
80 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 9336483b):
__kmalloc_noprof+0x3bf/0x560
__reuseport_alloc+0x1d/0x40
reuseport_alloc+0xca/0x150
reuseport_attach_prog+0x87/0x140
sk_reuseport_attach_bpf+0xc8/0x100
sk_setsockopt+0x1181/0x1990
do_sock_setsockopt+0x12b/0x160
__sys_setsockopt+0x7b/0xc0
__x64_sys_setsockopt+0x1b/0x30
do_syscall_64+0x93/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
In the Linux kernel, the following vulnerability has been resolved:
eth: bnxt: always recalculate features after XDP clearing, fix null-deref
Recalculate features when XDP is detached.
Before:
# ip li set dev eth0 xdp obj xdp_dummy.bpf.o sec xdp
# ip li set dev eth0 xdp off
# ethtool -k eth0 | grep gro
rx-gro-hw: off [requested on]
After:
# ip li set dev eth0 xdp obj xdp_dummy.bpf.o sec xdp
# ip li set dev eth0 xdp off
# ethtool -k eth0 | grep gro
rx-gro-hw: on
The fact that HW-GRO doesn't get re-enabled automatically is just
a minor annoyance. The real issue is that the features will randomly
come back during another reconfiguration which just happens to invoke
netdev_update_features(). The driver doesn't handle reconfiguring
two things at a time very robustly.
Starting with commit 98ba1d931f61 ("bnxt_en: Fix RSS logic in
__bnxt_reserve_rings()") we only reconfigure the RSS hash table
if the "effective" number of Rx rings has changed. If HW-GRO is
enabled "effective" number of rings is 2x what user sees.
So if we are in the bad state, with HW-GRO re-enablement "pending"
after XDP off, and we lower the rings by / 2 - the HW-GRO rings
doing 2x and the ethtool -L doing / 2 may cancel each other out,
and the:
if (old_rx_rings != bp->hw_resc.resv_rx_rings &&
condition in __bnxt_reserve_rings() will be false.
The RSS map won't get updated, and we'll crash with:
BUG: kernel NULL pointer dereference, address: 0000000000000168
RIP: 0010:__bnxt_hwrm_vnic_set_rss+0x13a/0x1a0
bnxt_hwrm_vnic_rss_cfg_p5+0x47/0x180
__bnxt_setup_vnic_p5+0x58/0x110
bnxt_init_nic+0xb72/0xf50
__bnxt_open_nic+0x40d/0xab0
bnxt_open_nic+0x2b/0x60
ethtool_set_channels+0x18c/0x1d0
As we try to access a freed ring.
The issue is present since XDP support was added, really, but
prior to commit 98ba1d931f61 ("bnxt_en: Fix RSS logic in
__bnxt_reserve_rings()") it wasn't causing major issues. |