CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
nfsd: Fix a memory leak in an error handling path
If this memdup_user() call fails, the memory allocated in a previous call
a few lines above should be freed. Otherwise it leaks. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix issues in mpi3mr_get_all_tgt_info()
The function mpi3mr_get_all_tgt_info() has four issues:
1) It calculates valid entry length in alltgt_info assuming the header part
of the struct mpi3mr_device_map_info would equal to sizeof(u32). The
correct size is sizeof(u64).
2) When it calculates the valid entry length kern_entrylen, it excludes one
entry by subtracting 1 from num_devices.
3) It copies num_device by calling memcpy(). Substitution is enough.
4) It does not specify the calculated length to sg_copy_from_buffer().
Instead, it specifies the payload length which is larger than the
alltgt_info size. It causes "BUG: KASAN: slab-out-of-bounds".
Fix the issues by using the correct header size, removing the subtraction
from num_devices, replacing the memcpy() with substitution and specifying
the correct length to sg_copy_from_buffer(). |
In the Linux kernel, the following vulnerability has been resolved:
pstore/ram: Check start of empty przs during init
After commit 30696378f68a ("pstore/ram: Do not treat empty buffers as
valid"), initialization would assume a prz was valid after seeing that
the buffer_size is zero (regardless of the buffer start position). This
unchecked start value means it could be outside the bounds of the buffer,
leading to future access panics when written to:
sysdump_panic_event+0x3b4/0x5b8
atomic_notifier_call_chain+0x54/0x90
panic+0x1c8/0x42c
die+0x29c/0x2a8
die_kernel_fault+0x68/0x78
__do_kernel_fault+0x1c4/0x1e0
do_bad_area+0x40/0x100
do_translation_fault+0x68/0x80
do_mem_abort+0x68/0xf8
el1_da+0x1c/0xc0
__raw_writeb+0x38/0x174
__memcpy_toio+0x40/0xac
persistent_ram_update+0x44/0x12c
persistent_ram_write+0x1a8/0x1b8
ramoops_pstore_write+0x198/0x1e8
pstore_console_write+0x94/0xe0
...
To avoid this, also check if the prz start is 0 during the initialization
phase. If not, the next prz sanity check case will discover it (start >
size) and zap the buffer back to a sane state.
[kees: update commit log with backtrace and clarifications] |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix WARNING in mb_find_extent
Syzbot found the following issue:
EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!
EXT4-fs (loop0): orphan cleanup on readonly fs
------------[ cut here ]------------
WARNING: CPU: 1 PID: 5067 at fs/ext4/mballoc.c:1869 mb_find_extent+0x8a1/0xe30
Modules linked in:
CPU: 1 PID: 5067 Comm: syz-executor307 Not tainted 6.2.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
RIP: 0010:mb_find_extent+0x8a1/0xe30 fs/ext4/mballoc.c:1869
RSP: 0018:ffffc90003c9e098 EFLAGS: 00010293
RAX: ffffffff82405731 RBX: 0000000000000041 RCX: ffff8880783457c0
RDX: 0000000000000000 RSI: 0000000000000041 RDI: 0000000000000040
RBP: 0000000000000040 R08: ffffffff82405723 R09: ffffed10053c9402
R10: ffffed10053c9402 R11: 1ffff110053c9401 R12: 0000000000000000
R13: ffffc90003c9e538 R14: dffffc0000000000 R15: ffffc90003c9e2cc
FS: 0000555556665300(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056312f6796f8 CR3: 0000000022437000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ext4_mb_complex_scan_group+0x353/0x1100 fs/ext4/mballoc.c:2307
ext4_mb_regular_allocator+0x1533/0x3860 fs/ext4/mballoc.c:2735
ext4_mb_new_blocks+0xddf/0x3db0 fs/ext4/mballoc.c:5605
ext4_ext_map_blocks+0x1868/0x6880 fs/ext4/extents.c:4286
ext4_map_blocks+0xa49/0x1cc0 fs/ext4/inode.c:651
ext4_getblk+0x1b9/0x770 fs/ext4/inode.c:864
ext4_bread+0x2a/0x170 fs/ext4/inode.c:920
ext4_quota_write+0x225/0x570 fs/ext4/super.c:7105
write_blk fs/quota/quota_tree.c:64 [inline]
get_free_dqblk+0x34a/0x6d0 fs/quota/quota_tree.c:130
do_insert_tree+0x26b/0x1aa0 fs/quota/quota_tree.c:340
do_insert_tree+0x722/0x1aa0 fs/quota/quota_tree.c:375
do_insert_tree+0x722/0x1aa0 fs/quota/quota_tree.c:375
do_insert_tree+0x722/0x1aa0 fs/quota/quota_tree.c:375
dq_insert_tree fs/quota/quota_tree.c:401 [inline]
qtree_write_dquot+0x3b6/0x530 fs/quota/quota_tree.c:420
v2_write_dquot+0x11b/0x190 fs/quota/quota_v2.c:358
dquot_acquire+0x348/0x670 fs/quota/dquot.c:444
ext4_acquire_dquot+0x2dc/0x400 fs/ext4/super.c:6740
dqget+0x999/0xdc0 fs/quota/dquot.c:914
__dquot_initialize+0x3d0/0xcf0 fs/quota/dquot.c:1492
ext4_process_orphan+0x57/0x2d0 fs/ext4/orphan.c:329
ext4_orphan_cleanup+0xb60/0x1340 fs/ext4/orphan.c:474
__ext4_fill_super fs/ext4/super.c:5516 [inline]
ext4_fill_super+0x81cd/0x8700 fs/ext4/super.c:5644
get_tree_bdev+0x400/0x620 fs/super.c:1282
vfs_get_tree+0x88/0x270 fs/super.c:1489
do_new_mount+0x289/0xad0 fs/namespace.c:3145
do_mount fs/namespace.c:3488 [inline]
__do_sys_mount fs/namespace.c:3697 [inline]
__se_sys_mount+0x2d3/0x3c0 fs/namespace.c:3674
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Add some debug information:
mb_find_extent: mb_find_extent block=41, order=0 needed=64 next=0 ex=0/41/1@3735929054 64 64 7
block_bitmap: ff 3f 0c 00 fc 01 00 00 d2 3d 00 00 00 00 00 00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
Acctually, blocks per group is 64, but block bitmap indicate at least has
128 blocks. Now, ext4_validate_block_bitmap() didn't check invalid block's
bitmap if set.
To resolve above issue, add check like fsck "Padding at end of block bitmap is
not set". |
In the Linux kernel, the following vulnerability has been resolved:
fbdev/ep93xx-fb: Do not assign to struct fb_info.dev
Do not assing the Linux device to struct fb_info.dev. The call to
register_framebuffer() initializes the field to the fbdev device.
Drivers should not override its value.
Fixes a bug where the driver incorrectly decreases the hardware
device's reference counter and leaks the fbdev device.
v2:
* add Fixes tag (Dan) |
In the Linux kernel, the following vulnerability has been resolved:
recordmcount: Fix memory leaks in the uwrite function
Common realloc mistake: 'file_append' nulled but not freed upon failure |
In the Linux kernel, the following vulnerability has been resolved:
net: hns: fix possible memory leak in hnae_ae_register()
Inject fault while probing module, if device_register() fails,
but the refcount of kobject is not decreased to 0, the name
allocated in dev_set_name() is leaked. Fix this by calling
put_device(), so that name can be freed in callback function
kobject_cleanup().
unreferenced object 0xffff00c01aba2100 (size 128):
comm "systemd-udevd", pid 1259, jiffies 4294903284 (age 294.152s)
hex dump (first 32 bytes):
68 6e 61 65 30 00 00 00 18 21 ba 1a c0 00 ff ff hnae0....!......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000034783f26>] slab_post_alloc_hook+0xa0/0x3e0
[<00000000748188f2>] __kmem_cache_alloc_node+0x164/0x2b0
[<00000000ab0743e8>] __kmalloc_node_track_caller+0x6c/0x390
[<000000006c0ffb13>] kvasprintf+0x8c/0x118
[<00000000fa27bfe1>] kvasprintf_const+0x60/0xc8
[<0000000083e10ed7>] kobject_set_name_vargs+0x3c/0xc0
[<000000000b87affc>] dev_set_name+0x7c/0xa0
[<000000003fd8fe26>] hnae_ae_register+0xcc/0x190 [hnae]
[<00000000fe97edc9>] hns_dsaf_ae_init+0x9c/0x108 [hns_dsaf]
[<00000000c36ff1eb>] hns_dsaf_probe+0x548/0x748 [hns_dsaf] |
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix xid leak in cifs_create()
If the cifs already shutdown, we should free the xid before return,
otherwise, the xid will be leaked. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix a race condition between login_work and the login thread
In case a malicious initiator sends some random data immediately after a
login PDU; the iscsi_target_sk_data_ready() callback will schedule the
login_work and, at the same time, the negotiation may end without clearing
the LOGIN_FLAGS_INITIAL_PDU flag (because no additional PDU exchanges are
required to complete the login).
The login has been completed but the login_work function will find the
LOGIN_FLAGS_INITIAL_PDU flag set and will never stop from rescheduling
itself; at this point, if the initiator drops the connection, the
iscsit_conn structure will be freed, login_work will dereference a released
socket structure and the kernel crashes.
BUG: kernel NULL pointer dereference, address: 0000000000000230
PF: supervisor write access in kernel mode
PF: error_code(0x0002) - not-present page
Workqueue: events iscsi_target_do_login_rx [iscsi_target_mod]
RIP: 0010:_raw_read_lock_bh+0x15/0x30
Call trace:
iscsi_target_do_login_rx+0x75/0x3f0 [iscsi_target_mod]
process_one_work+0x1e8/0x3c0
Fix this bug by forcing login_work to stop after the login has been
completed and the socket callbacks have been restored.
Add a comment to clearify the return values of iscsi_target_do_login() |
In the Linux kernel, the following vulnerability has been resolved:
workqueue: fix data race with the pwq->stats[] increment
KCSAN has discovered a data race in kernel/workqueue.c:2598:
[ 1863.554079] ==================================================================
[ 1863.554118] BUG: KCSAN: data-race in process_one_work / process_one_work
[ 1863.554142] write to 0xffff963d99d79998 of 8 bytes by task 5394 on cpu 27:
[ 1863.554154] process_one_work (kernel/workqueue.c:2598)
[ 1863.554166] worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2752)
[ 1863.554177] kthread (kernel/kthread.c:389)
[ 1863.554186] ret_from_fork (arch/x86/kernel/process.c:145)
[ 1863.554197] ret_from_fork_asm (arch/x86/entry/entry_64.S:312)
[ 1863.554213] read to 0xffff963d99d79998 of 8 bytes by task 5450 on cpu 12:
[ 1863.554224] process_one_work (kernel/workqueue.c:2598)
[ 1863.554235] worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2752)
[ 1863.554247] kthread (kernel/kthread.c:389)
[ 1863.554255] ret_from_fork (arch/x86/kernel/process.c:145)
[ 1863.554266] ret_from_fork_asm (arch/x86/entry/entry_64.S:312)
[ 1863.554280] value changed: 0x0000000000001766 -> 0x000000000000176a
[ 1863.554295] Reported by Kernel Concurrency Sanitizer on:
[ 1863.554303] CPU: 12 PID: 5450 Comm: kworker/u64:1 Tainted: G L 6.5.0-rc6+ #44
[ 1863.554314] Hardware name: ASRock X670E PG Lightning/X670E PG Lightning, BIOS 1.21 04/26/2023
[ 1863.554322] Workqueue: btrfs-endio btrfs_end_bio_work [btrfs]
[ 1863.554941] ==================================================================
lockdep_invariant_state(true);
→ pwq->stats[PWQ_STAT_STARTED]++;
trace_workqueue_execute_start(work);
worker->current_func(work);
Moving pwq->stats[PWQ_STAT_STARTED]++; before the line
raw_spin_unlock_irq(&pool->lock);
resolves the data race without performance penalty.
KCSAN detected at least one additional data race:
[ 157.834751] ==================================================================
[ 157.834770] BUG: KCSAN: data-race in process_one_work / process_one_work
[ 157.834793] write to 0xffff9934453f77a0 of 8 bytes by task 468 on cpu 29:
[ 157.834804] process_one_work (/home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2606)
[ 157.834815] worker_thread (/home/marvin/linux/kernel/linux_torvalds/./include/linux/list.h:292 /home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2752)
[ 157.834826] kthread (/home/marvin/linux/kernel/linux_torvalds/kernel/kthread.c:389)
[ 157.834834] ret_from_fork (/home/marvin/linux/kernel/linux_torvalds/arch/x86/kernel/process.c:145)
[ 157.834845] ret_from_fork_asm (/home/marvin/linux/kernel/linux_torvalds/arch/x86/entry/entry_64.S:312)
[ 157.834859] read to 0xffff9934453f77a0 of 8 bytes by task 214 on cpu 7:
[ 157.834868] process_one_work (/home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2606)
[ 157.834879] worker_thread (/home/marvin/linux/kernel/linux_torvalds/./include/linux/list.h:292 /home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2752)
[ 157.834890] kthread (/home/marvin/linux/kernel/linux_torvalds/kernel/kthread.c:389)
[ 157.834897] ret_from_fork (/home/marvin/linux/kernel/linux_torvalds/arch/x86/kernel/process.c:145)
[ 157.834907] ret_from_fork_asm (/home/marvin/linux/kernel/linux_torvalds/arch/x86/entry/entry_64.S:312)
[ 157.834920] value changed: 0x000000000000052a -> 0x0000000000000532
[ 157.834933] Reported by Kernel Concurrency Sanitizer on:
[ 157.834941] CPU: 7 PID: 214 Comm: kworker/u64:2 Tainted: G L 6.5.0-rc7-kcsan-00169-g81eaf55a60fc #4
[ 157.834951] Hardware name: ASRock X670E PG Lightning/X670E PG Lightning, BIOS 1.21 04/26/2023
[ 157.834958] Workqueue: btrfs-endio btrfs_end_bio_work [btrfs]
[ 157.835567] ==================================================================
in code:
trace_workqueue_execute_end(work, worker->current_func);
→ pwq->stats[PWQ_STAT_COM
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
USB: chipidea: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
In the Linux kernel, the following vulnerability has been resolved:
rbd: avoid use-after-free in do_rbd_add() when rbd_dev_create() fails
If getting an ID or setting up a work queue in rbd_dev_create() fails,
use-after-free on rbd_dev->rbd_client, rbd_dev->spec and rbd_dev->opts
is triggered in do_rbd_add(). The root cause is that the ownership of
these structures is transfered to rbd_dev prematurely and they all end
up getting freed when rbd_dev_create() calls rbd_dev_free() prior to
returning to do_rbd_add().
Found by Linux Verification Center (linuxtesting.org) with SVACE, an
incomplete patch submitted by Natalia Petrova <n.petrova@fintech.ru>. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_rbtree: fix overlap expiration walk
The lazy gc on insert that should remove timed-out entries fails to release
the other half of the interval, if any.
Can be reproduced with tests/shell/testcases/sets/0044interval_overlap_0
in nftables.git and kmemleak enabled kernel.
Second bug is the use of rbe_prev vs. prev pointer.
If rbe_prev() returns NULL after at least one iteration, rbe_prev points
to element that is not an end interval, hence it should not be removed.
Lastly, check the genmask of the end interval if this is active in the
current generation. |
In the Linux kernel, the following vulnerability has been resolved:
powerpc: Don't try to copy PPR for task with NULL pt_regs
powerpc sets up PF_KTHREAD and PF_IO_WORKER with a NULL pt_regs, which
from my (arguably very short) checking is not commonly done for other
archs. This is fine, except when PF_IO_WORKER's have been created and
the task does something that causes a coredump to be generated. Then we
get this crash:
Kernel attempted to read user page (160) - exploit attempt? (uid: 1000)
BUG: Kernel NULL pointer dereference on read at 0x00000160
Faulting instruction address: 0xc0000000000c3a60
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=32 NUMA pSeries
Modules linked in: bochs drm_vram_helper drm_kms_helper xts binfmt_misc ecb ctr syscopyarea sysfillrect cbc sysimgblt drm_ttm_helper aes_generic ttm sg libaes evdev joydev virtio_balloon vmx_crypto gf128mul drm dm_mod fuse loop configfs drm_panel_orientation_quirks ip_tables x_tables autofs4 hid_generic usbhid hid xhci_pci xhci_hcd usbcore usb_common sd_mod
CPU: 1 PID: 1982 Comm: ppc-crash Not tainted 6.3.0-rc2+ #88
Hardware name: IBM pSeries (emulated by qemu) POWER9 (raw) 0x4e1202 0xf000005 of:SLOF,HEAD hv:linux,kvm pSeries
NIP: c0000000000c3a60 LR: c000000000039944 CTR: c0000000000398e0
REGS: c0000000041833b0 TRAP: 0300 Not tainted (6.3.0-rc2+)
MSR: 800000000280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 88082828 XER: 200400f8
...
NIP memcpy_power7+0x200/0x7d0
LR ppr_get+0x64/0xb0
Call Trace:
ppr_get+0x40/0xb0 (unreliable)
__regset_get+0x180/0x1f0
regset_get_alloc+0x64/0x90
elf_core_dump+0xb98/0x1b60
do_coredump+0x1c34/0x24a0
get_signal+0x71c/0x1410
do_notify_resume+0x140/0x6f0
interrupt_exit_user_prepare_main+0x29c/0x320
interrupt_exit_user_prepare+0x6c/0xa0
interrupt_return_srr_user+0x8/0x138
Because ppr_get() is trying to copy from a PF_IO_WORKER with a NULL
pt_regs.
Check for a valid pt_regs in both ppc_get/ppr_set, and return an error
if not set. The actual error value doesn't seem to be important here, so
just pick -EINVAL.
[mpe: Trim oops in change log, add Fixes & Cc stable] |
In the Linux kernel, the following vulnerability has been resolved:
net: fec: Better handle pm_runtime_get() failing in .remove()
In the (unlikely) event that pm_runtime_get() (disguised as
pm_runtime_resume_and_get()) fails, the remove callback returned an
error early. The problem with this is that the driver core ignores the
error value and continues removing the device. This results in a
resource leak. Worse the devm allocated resources are freed and so if a
callback of the driver is called later the register mapping is already
gone which probably results in a crash. |
In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Fix integer overflow in radeon_cs_parser_init
The type of size is unsigned, if size is 0x40000000, there will be an
integer overflow, size will be zero after size *= sizeof(uint32_t),
will cause uninitialized memory to be referenced later |
In the Linux kernel, the following vulnerability has been resolved:
mmc: rtsx_usb_sdmmc: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and calling mmc_free_host() in the
error path, besides, led_classdev_unregister() and pm_runtime_disable() also
need be called. |
In the Linux kernel, the following vulnerability has been resolved:
genirq/ipi: Fix NULL pointer deref in irq_data_get_affinity_mask()
If ipi_send_{mask|single}() is called with an invalid interrupt number, all
the local variables there will be NULL. ipi_send_verify() which is invoked
from these functions does verify its 'data' parameter, resulting in a
kernel oops in irq_data_get_affinity_mask() as the passed NULL pointer gets
dereferenced.
Add a missing NULL pointer check in ipi_send_verify()...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix oops during encryption
When running xfstests against Azure the following oops occurred on an
arm64 system
Unable to handle kernel write to read-only memory at virtual address
ffff0001221cf000
Mem abort info:
ESR = 0x9600004f
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x0f: level 3 permission fault
Data abort info:
ISV = 0, ISS = 0x0000004f
CM = 0, WnR = 1
swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000294f3000
[ffff0001221cf000] pgd=18000001ffff8003, p4d=18000001ffff8003,
pud=18000001ff82e003, pmd=18000001ff71d003, pte=00600001221cf787
Internal error: Oops: 9600004f [#1] PREEMPT SMP
...
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO BTYPE=--)
pc : __memcpy+0x40/0x230
lr : scatterwalk_copychunks+0xe0/0x200
sp : ffff800014e92de0
x29: ffff800014e92de0 x28: ffff000114f9de80 x27: 0000000000000008
x26: 0000000000000008 x25: ffff800014e92e78 x24: 0000000000000008
x23: 0000000000000001 x22: 0000040000000000 x21: ffff000000000000
x20: 0000000000000001 x19: ffff0001037c4488 x18: 0000000000000014
x17: 235e1c0d6efa9661 x16: a435f9576b6edd6c x15: 0000000000000058
x14: 0000000000000001 x13: 0000000000000008 x12: ffff000114f2e590
x11: ffffffffffffffff x10: 0000040000000000 x9 : ffff8000105c3580
x8 : 2e9413b10000001a x7 : 534b4410fb86b005 x6 : 534b4410fb86b005
x5 : ffff0001221cf008 x4 : ffff0001037c4490 x3 : 0000000000000001
x2 : 0000000000000008 x1 : ffff0001037c4488 x0 : ffff0001221cf000
Call trace:
__memcpy+0x40/0x230
scatterwalk_map_and_copy+0x98/0x100
crypto_ccm_encrypt+0x150/0x180
crypto_aead_encrypt+0x2c/0x40
crypt_message+0x750/0x880
smb3_init_transform_rq+0x298/0x340
smb_send_rqst.part.11+0xd8/0x180
smb_send_rqst+0x3c/0x100
compound_send_recv+0x534/0xbc0
smb2_query_info_compound+0x32c/0x440
smb2_set_ea+0x438/0x4c0
cifs_xattr_set+0x5d4/0x7c0
This is because in scatterwalk_copychunks(), we attempted to write to
a buffer (@sign) that was allocated in the stack (vmalloc area) by
crypt_message() and thus accessing its remaining 8 (x2) bytes ended up
crossing a page boundary.
To simply fix it, we could just pass @sign kmalloc'd from
crypt_message() and then we're done. Luckily, we don't seem to pass
any other vmalloc'd buffers in smb_rqst::rq_iov...
Instead, let's map the correct pages and offsets from vmalloc buffers
as well in cifs_sg_set_buf() and then avoiding such oopses. |
In the Linux kernel, the following vulnerability has been resolved:
floppy: Fix memory leak in do_floppy_init()
A memory leak was reported when floppy_alloc_disk() failed in
do_floppy_init().
unreferenced object 0xffff888115ed25a0 (size 8):
comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s)
hex dump (first 8 bytes):
00 ac 67 5b 81 88 ff ff ..g[....
backtrace:
[<000000007f457abb>] __kmalloc_node+0x4c/0xc0
[<00000000a87bfa9e>] blk_mq_realloc_tag_set_tags.part.0+0x6f/0x180
[<000000006f02e8b1>] blk_mq_alloc_tag_set+0x573/0x1130
[<0000000066007fd7>] 0xffffffffc06b8b08
[<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0
[<00000000e26d04ee>] do_init_module+0x1a4/0x680
[<000000001bb22407>] load_module+0x6249/0x7110
[<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200
[<000000007bddca46>] do_syscall_64+0x35/0x80
[<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
unreferenced object 0xffff88810fc30540 (size 32):
comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000007f457abb>] __kmalloc_node+0x4c/0xc0
[<000000006b91eab4>] blk_mq_alloc_tag_set+0x393/0x1130
[<0000000066007fd7>] 0xffffffffc06b8b08
[<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0
[<00000000e26d04ee>] do_init_module+0x1a4/0x680
[<000000001bb22407>] load_module+0x6249/0x7110
[<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200
[<000000007bddca46>] do_syscall_64+0x35/0x80
[<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
If the floppy_alloc_disk() failed, disks of current drive will not be set,
thus the lastest allocated set->tag cannot be freed in the error handling
path. A simple call graph shown as below:
floppy_module_init()
floppy_init()
do_floppy_init()
for (drive = 0; drive < N_DRIVE; drive++)
blk_mq_alloc_tag_set()
blk_mq_alloc_tag_set_tags()
blk_mq_realloc_tag_set_tags() # set->tag allocated
floppy_alloc_disk()
blk_mq_alloc_disk() # error occurred, disks failed to allocated
->out_put_disk:
for (drive = 0; drive < N_DRIVE; drive++)
if (!disks[drive][0]) # the last disks is not set and loop break
break;
blk_mq_free_tag_set() # the latest allocated set->tag leaked
Fix this problem by free the set->tag of current drive before jump to
error handling path.
[efremov: added stable list, changed title] |