CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
An issue was discovered in the Multipart Request Parser in Django 3.2 before 3.2.18, 4.0 before 4.0.10, and 4.1 before 4.1.7. Passing certain inputs (e.g., an excessive number of parts) to multipart forms could result in too many open files or memory exhaustion, and provided a potential vector for a denial-of-service attack. |
jackson-databind 2.10.x through 2.12.x before 2.12.6 and 2.13.x before 2.13.1 allows attackers to cause a denial of service (2 GB transient heap usage per read) in uncommon situations involving JsonNode JDK serialization. |
ActiveSupport::EncryptedFile writes contents that will be encrypted to a
temporary file. The temporary file's permissions are defaulted to the user's
current `umask` settings, meaning that it's possible for other users on the
same system to read the contents of the temporary file.
Attackers that have access to the file system could possibly read the contents
of this temporary file while a user is editing it.
All users running an affected release should either upgrade or use one of the
workarounds immediately. |
Rack is a modular Ruby web server interface. Carefully crafted headers can cause header parsing in Rack to take longer than expected resulting in a possible denial of service issue. Accept and Forwarded headers are impacted. Ruby 3.2 has mitigations for this problem, so Rack applications using Ruby 3.2 or newer are unaffected. This vulnerability is fixed in 2.0.9.4, 2.1.4.4, 2.2.8.1, and 3.0.9.1. |
Rack is a modular Ruby web server interface. Carefully crafted content type headers can cause Rack’s media type parser to take much longer than expected, leading to a possible denial of service vulnerability (ReDos 2nd degree polynomial). This vulnerability is patched in 3.0.9.1 and 2.2.8.1. |
Rack is a modular Ruby web server interface. Carefully crafted Range headers can cause a server to respond with an unexpectedly large response. Responding with such large responses could lead to a denial of service issue. Vulnerable applications will use the `Rack::File` middleware or the `Rack::Utils.byte_ranges` methods (this includes Rails applications). The vulnerability is fixed in 3.0.9.1 and 2.2.8.1. |
urllib3 is a user-friendly HTTP client library for Python. urllib3 previously wouldn't remove the HTTP request body when an HTTP redirect response using status 301, 302, or 303 after the request had its method changed from one that could accept a request body (like `POST`) to `GET` as is required by HTTP RFCs. Although this behavior is not specified in the section for redirects, it can be inferred by piecing together information from different sections and we have observed the behavior in other major HTTP client implementations like curl and web browsers. Because the vulnerability requires a previously trusted service to become compromised in order to have an impact on confidentiality we believe the exploitability of this vulnerability is low. Additionally, many users aren't putting sensitive data in HTTP request bodies, if this is the case then this vulnerability isn't exploitable. Both of the following conditions must be true to be affected by this vulnerability: 1. Using urllib3 and submitting sensitive information in the HTTP request body (such as form data or JSON) and 2. The origin service is compromised and starts redirecting using 301, 302, or 303 to a malicious peer or the redirected-to service becomes compromised. This issue has been addressed in versions 1.26.18 and 2.0.7 and users are advised to update to resolve this issue. Users unable to update should disable redirects for services that aren't expecting to respond with redirects with `redirects=False` and disable automatic redirects with `redirects=False` and handle 301, 302, and 303 redirects manually by stripping the HTTP request body. |
aiohttp is an asynchronous HTTP client/server framework for asyncio and Python. Security-sensitive parts of the Python HTTP parser retained minor differences in allowable character sets, that must trigger error handling to robustly match frame boundaries of proxies in order to protect against injection of additional requests. Additionally, validation could trigger exceptions that were not handled consistently with processing of other malformed input. Being more lenient than internet standards require could, depending on deployment environment, assist in request smuggling. The unhandled exception could cause excessive resource consumption on the application server and/or its logging facilities. This vulnerability exists due to an incomplete fix for CVE-2023-47627. Version 3.9.2 fixes this vulnerability. |
Gunicorn fails to properly validate Transfer-Encoding headers, leading to HTTP Request Smuggling (HRS) vulnerabilities. By crafting requests with conflicting Transfer-Encoding headers, attackers can bypass security restrictions and access restricted endpoints. This issue is due to Gunicorn's handling of Transfer-Encoding headers, where it incorrectly processes requests with multiple, conflicting Transfer-Encoding headers, treating them as chunked regardless of the final encoding specified. This vulnerability allows for a range of attacks including cache poisoning, session manipulation, and data exposure. |
aiohttp is an asynchronous HTTP client/server framework for asyncio and Python. The HTTP parser in AIOHTTP has numerous problems with header parsing, which could lead to request smuggling. This parser is only used when AIOHTTP_NO_EXTENSIONS is enabled (or not using a prebuilt wheel). These bugs have been addressed in commit `d5c12ba89` which has been included in release version 3.8.6. Users are advised to upgrade. There are no known workarounds for these issues. |
In Mosquitto before 2.0.16, a memory leak occurs when clients send v5 CONNECT packets with a will message that contains invalid property types. |
Requests is a HTTP library. Since Requests 2.3.0, Requests has been leaking Proxy-Authorization headers to destination servers when redirected to an HTTPS endpoint. This is a product of how we use `rebuild_proxies` to reattach the `Proxy-Authorization` header to requests. For HTTP connections sent through the tunnel, the proxy will identify the header in the request itself and remove it prior to forwarding to the destination server. However when sent over HTTPS, the `Proxy-Authorization` header must be sent in the CONNECT request as the proxy has no visibility into the tunneled request. This results in Requests forwarding proxy credentials to the destination server unintentionally, allowing a malicious actor to potentially exfiltrate sensitive information. This issue has been patched in version 2.31.0. |
sqlparse is a non-validating SQL parser module for Python. In affected versions the SQL parser contains a regular expression that is vulnerable to ReDoS (Regular Expression Denial of Service). This issue was introduced by commit `e75e358`. The vulnerability may lead to Denial of Service (DoS). This issues has been fixed in sqlparse 0.4.4 by commit `c457abd5f`. Users are advised to upgrade. There are no known workarounds for this issue. |
Jetty is a Java based web server and servlet engine. Prior to versions 9.4.52, 10.0.16, 11.0.16, and 12.0.1, Jetty accepts the `+` character proceeding the content-length value in a HTTP/1 header field. This is more permissive than allowed by the RFC and other servers routinely reject such requests with 400 responses. There is no known exploit scenario, but it is conceivable that request smuggling could result if jetty is used in combination with a server that does not close the connection after sending such a 400 response. Versions 9.4.52, 10.0.16, 11.0.16, and 12.0.1 contain a patch for this issue. There is no workaround as there is no known exploit scenario. |
Jetty is a java based web server and servlet engine. Nonstandard cookie parsing in Jetty may allow an attacker to smuggle cookies within other cookies, or otherwise perform unintended behavior by tampering with the cookie parsing mechanism. If Jetty sees a cookie VALUE that starts with `"` (double quote), it will continue to read the cookie string until it sees a closing quote -- even if a semicolon is encountered. So, a cookie header such as: `DISPLAY_LANGUAGE="b; JSESSIONID=1337; c=d"` will be parsed as one cookie, with the name DISPLAY_LANGUAGE and a value of b; JSESSIONID=1337; c=d instead of 3 separate cookies. This has security implications because if, say, JSESSIONID is an HttpOnly cookie, and the DISPLAY_LANGUAGE cookie value is rendered on the page, an attacker can smuggle the JSESSIONID cookie into the DISPLAY_LANGUAGE cookie and thereby exfiltrate it. This is significant when an intermediary is enacting some policy based on cookies, so a smuggled cookie can bypass that policy yet still be seen by the Jetty server or its logging system. This issue has been addressed in versions 9.4.51, 10.0.14, 11.0.14, and 12.0.0.beta0 and users are advised to upgrade. There are no known workarounds for this issue. |
In Mosquitto before 2.0.16, excessive memory is allocated based on malicious initial packets that are not CONNECT packets. |
An issue was discovered in Django 3.2 before 3.2.14 and 4.0 before 4.0.6. The Trunc() and Extract() database functions are subject to SQL injection if untrusted data is used as a kind/lookup_name value. Applications that constrain the lookup name and kind choice to a known safe list are unaffected. |
A SQL injection issue was discovered in QuerySet.explain() in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. This occurs by passing a crafted dictionary (with dictionary expansion) as the **options argument, and placing the injection payload in an option name. |
An issue was discovered in Django 2.2 before 2.2.28, 3.2 before 3.2.13, and 4.0 before 4.0.4. QuerySet.annotate(), aggregate(), and extra() methods are subject to SQL injection in column aliases via a crafted dictionary (with dictionary expansion) as the passed **kwargs. |
Handling of the close_notify SSL/TLS message does not lead to a connection closure, leading the server to retain the socket opened and to have the client potentially receive clear text messages afterward. Mitigation: 2.0.20 users should migrate to 2.0.21, 2.1.0 users should migrate to 2.1.1. This issue affects: Apache MINA. |