CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
habanalabs: fix UAF in export_dmabuf()
As soon as we'd inserted a file reference into descriptor table, another
thread could close it. That's fine for the case when all we are doing is
returning that descriptor to userland (it's a race, but it's a userland
race and there's nothing the kernel can do about it). However, if we
follow fd_install() with any kind of access to objects that would be
destroyed on close (be it the struct file itself or anything destroyed
by its ->release()), we have a UAF.
dma_buf_fd() is a combination of reserving a descriptor and fd_install().
habanalabs export_dmabuf() calls it and then proceeds to access the
objects destroyed on close. In particular, it grabs an extra reference to
another struct file that will be dropped as part of ->release() for ours;
that "will be" is actually "might have already been".
Fix that by reserving descriptor before anything else and do fd_install()
only when everything had been set up. As a side benefit, we no longer
have the failure exit with file already created, but reference to
underlying file (as well as ->dmabuf_export_cnt, etc.) not grabbed yet;
unlike dma_buf_fd(), fd_install() can't fail. |
In the Linux kernel, the following vulnerability has been resolved:
media: venus: Fix OOB read due to missing payload bound check
Currently, The event_seq_changed() handler processes a variable number
of properties sent by the firmware. The number of properties is indicated
by the firmware and used to iterate over the payload. However, the
payload size is not being validated against the actual message length.
This can lead to out-of-bounds memory access if the firmware provides a
property count that exceeds the data available in the payload. Such a
condition can result in kernel crashes or potential information leaks if
memory beyond the buffer is accessed.
Fix this by properly validating the remaining size of the payload before
each property access and updating bounds accordingly as properties are
parsed.
This ensures that property parsing is safely bounded within the received
message buffer and protects against malformed or malicious firmware
behavior. |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: Fix vmalloc out-of-bounds write in fast_imageblit
This issue triggers when a userspace program does an ioctl
FBIOPUT_CON2FBMAP by passing console number and frame buffer number.
Ideally this maps console to frame buffer and updates the screen if
console is visible.
As part of mapping it has to do resize of console according to frame
buffer info. if this resize fails and returns from vc_do_resize() and
continues further. At this point console and new frame buffer are mapped
and sets display vars. Despite failure still it continue to proceed
updating the screen at later stages where vc_data is related to previous
frame buffer and frame buffer info and display vars are mapped to new
frame buffer and eventully leading to out-of-bounds write in
fast_imageblit(). This bheviour is excepted only when fg_console is
equal to requested console which is a visible console and updates screen
with invalid struct references in fbcon_putcs(). |
In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Fix NULL dereference in avx512_status()
Problem
-------
With CONFIG_X86_DEBUG_FPU enabled, reading /proc/[kthread]/arch_status
causes a warning and a NULL pointer dereference.
This is because the AVX-512 timestamp code uses x86_task_fpu() but
doesn't check it for NULL. CONFIG_X86_DEBUG_FPU addles that function
for kernel threads (PF_KTHREAD specifically), making it return NULL.
The point of the warning was to ensure that kernel threads only access
task->fpu after going through kernel_fpu_begin()/_end(). Note: all
kernel tasks exposed in /proc have a valid task->fpu.
Solution
--------
One option is to silence the warning and check for NULL from
x86_task_fpu(). However, that warning is fairly fresh and seems like a
defense against misuse of the FPU state in kernel threads.
Instead, stop outputting AVX-512_elapsed_ms for kernel threads
altogether. The data was garbage anyway because avx512_timestamp is
only updated for user threads, not kernel threads.
If anyone ever wants to track kernel thread AVX-512 use, they can come
back later and do it properly, separate from this bug fix.
[ dhansen: mostly rewrite changelog ] |
In the Linux kernel, the following vulnerability has been resolved:
scsi: libiscsi: Initialize iscsi_conn->dd_data only if memory is allocated
In case of an ib_fast_reg_mr allocation failure during iSER setup, the
machine hits a panic because iscsi_conn->dd_data is initialized
unconditionally, even when no memory is allocated (dd_size == 0). This
leads invalid pointer dereference during connection teardown.
Fix by setting iscsi_conn->dd_data only if memory is actually allocated.
Panic trace:
------------
iser: iser_create_fastreg_desc: Failed to allocate ib_fast_reg_mr err=-12
iser: iser_alloc_rx_descriptors: failed allocating rx descriptors / data buffers
BUG: unable to handle page fault for address: fffffffffffffff8
RIP: 0010:swake_up_locked.part.5+0xa/0x40
Call Trace:
complete+0x31/0x40
iscsi_iser_conn_stop+0x88/0xb0 [ib_iser]
iscsi_stop_conn+0x66/0xc0 [scsi_transport_iscsi]
iscsi_if_stop_conn+0x14a/0x150 [scsi_transport_iscsi]
iscsi_if_rx+0x1135/0x1834 [scsi_transport_iscsi]
? netlink_lookup+0x12f/0x1b0
? netlink_deliver_tap+0x2c/0x200
netlink_unicast+0x1ab/0x280
netlink_sendmsg+0x257/0x4f0
? _copy_from_user+0x29/0x60
sock_sendmsg+0x5f/0x70 |
In the Linux kernel, the following vulnerability has been resolved:
rcu/nocb: Fix possible invalid rdp's->nocb_cb_kthread pointer access
In the preparation stage of CPU online, if the corresponding
the rdp's->nocb_cb_kthread does not exist, will be created,
there is a situation where the rdp's rcuop kthreads creation fails,
and then de-offload this CPU's rdp, does not assign this CPU's
rdp->nocb_cb_kthread pointer, but this rdp's->nocb_gp_rdp and
rdp's->rdp_gp->nocb_gp_kthread is still valid.
This will cause the subsequent re-offload operation of this offline
CPU, which will pass the conditional check and the kthread_unpark()
will access invalid rdp's->nocb_cb_kthread pointer.
This commit therefore use rdp's->nocb_gp_kthread instead of
rdp_gp's->nocb_gp_kthread for safety check. |
In the Linux kernel, the following vulnerability has been resolved:
drbd: add missing kref_get in handle_write_conflicts
With `two-primaries` enabled, DRBD tries to detect "concurrent" writes
and handle write conflicts, so that even if you write to the same sector
simultaneously on both nodes, they end up with the identical data once
the writes are completed.
In handling "superseeded" writes, we forgot a kref_get,
resulting in a premature drbd_destroy_device and use after free,
and further to kernel crashes with symptoms.
Relevance: No one should use DRBD as a random data generator, and apparently
all users of "two-primaries" handle concurrent writes correctly on layer up.
That is cluster file systems use some distributed lock manager,
and live migration in virtualization environments stops writes on one node
before starting writes on the other node.
Which means that other than for "test cases",
this code path is never taken in real life.
FYI, in DRBD 9, things are handled differently nowadays. We still detect
"write conflicts", but no longer try to be smart about them.
We decided to disconnect hard instead: upper layers must not submit concurrent
writes. If they do, that's their fault. |
In the Linux kernel, the following vulnerability has been resolved:
io_uring/net: commit partial buffers on retry
Ring provided buffers are potentially only valid within the single
execution context in which they were acquired. io_uring deals with this
and invalidates them on retry. But on the networking side, if
MSG_WAITALL is set, or if the socket is of the streaming type and too
little was processed, then it will hang on to the buffer rather than
recycle or commit it. This is problematic for two reasons:
1) If someone unregisters the provided buffer ring before a later retry,
then the req->buf_list will no longer be valid.
2) If multiple sockers are using the same buffer group, then multiple
receives can consume the same memory. This can cause data corruption
in the application, as either receive could land in the same
userspace buffer.
Fix this by disallowing partial retries from pinning a provided buffer
across multiple executions, if ring provided buffers are used. |
In the Linux kernel, the following vulnerability has been resolved:
posix-cpu-timers: fix race between handle_posix_cpu_timers() and posix_cpu_timer_del()
If an exiting non-autoreaping task has already passed exit_notify() and
calls handle_posix_cpu_timers() from IRQ, it can be reaped by its parent
or debugger right after unlock_task_sighand().
If a concurrent posix_cpu_timer_del() runs at that moment, it won't be
able to detect timer->it.cpu.firing != 0: cpu_timer_task_rcu() and/or
lock_task_sighand() will fail.
Add the tsk->exit_state check into run_posix_cpu_timers() to fix this.
This fix is not needed if CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y, because
exit_task_work() is called before exit_notify(). But the check still
makes sense, task_work_add(&tsk->posix_cputimers_work.work) will fail
anyway in this case. |
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: reject duplicate device on updates
A chain/flowtable update with duplicated devices in the same batch is
possible. Unfortunately, netdev event path only removes the first
device that is found, leaving unregistered the hook of the duplicated
device.
Check if a duplicated device exists in the transaction batch, bail out
with EEXIST in such case.
WARNING is hit when unregistering the hook:
[49042.221275] WARNING: CPU: 4 PID: 8425 at net/netfilter/core.c:340 nf_hook_entry_head+0xaa/0x150
[49042.221375] CPU: 4 UID: 0 PID: 8425 Comm: nft Tainted: G S 6.16.0+ #170 PREEMPT(full)
[...]
[49042.221382] RIP: 0010:nf_hook_entry_head+0xaa/0x150 |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: rt5645: Fix errorenous cleanup order
There is a logic error when removing rt5645 device as the function
rt5645_i2c_remove() first cancel the &rt5645->jack_detect_work and
delete the &rt5645->btn_check_timer latter. However, since the timer
handler rt5645_btn_check_callback() will re-queue the jack_detect_work,
this cleanup order is buggy.
That is, once the del_timer_sync in rt5645_i2c_remove is concurrently
run with the rt5645_btn_check_callback, the canceled jack_detect_work
will be rescheduled again, leading to possible use-after-free.
This patch fix the issue by placing the del_timer_sync function before
the cancel_delayed_work_sync. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Don't treat wb connector as physical in create_validate_stream_for_sink
Don't try to operate on a drm_wb_connector as an amdgpu_dm_connector.
While dereferencing aconnector->base will "work" it's wrong and
might lead to unknown bad things. Just... don't. |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: use list_first_entry_or_null for opinfo_get_list()
The list_first_entry() macro never returns NULL. If the list is
empty then it returns an invalid pointer. Use list_first_entry_or_null()
to check if the list is empty. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Adding array index check to prevent memory corruption
[Why & How]
Array indices out of bound caused memory corruption. Adding checks to
ensure that array index stays in bound. |
In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix potential buffer overflowin nfs_sysfs_link_rpc_client()
name is char[64] where the size of clnt->cl_program->name remains
unknown. Invoking strcat() directly will also lead to potential buffer
overflow. Change them to strscpy() and strncat() to fix potential
issues. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Handle dml allocation failure to avoid crash
[Why]
In the case where a dml allocation fails for any reason, the
current state's dml contexts would no longer be valid. Then
subsequent calls dc_state_copy_internal would shallow copy
invalid memory and if the new state was released, a double
free would occur.
[How]
Reset dml pointers in new_state to NULL and avoid invalid
pointer
(cherry picked from commit bcafdc61529a48f6f06355d78eb41b3aeda5296c) |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Adjust VSDB parser for replay feature
At some point, the IEEE ID identification for the replay check in the
AMD EDID was added. However, this check causes the following
out-of-bounds issues when using KASAN:
[ 27.804016] BUG: KASAN: slab-out-of-bounds in amdgpu_dm_update_freesync_caps+0xefa/0x17a0 [amdgpu]
[ 27.804788] Read of size 1 at addr ffff8881647fdb00 by task systemd-udevd/383
...
[ 27.821207] Memory state around the buggy address:
[ 27.821215] ffff8881647fda00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 27.821224] ffff8881647fda80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 27.821234] >ffff8881647fdb00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 27.821243] ^
[ 27.821250] ffff8881647fdb80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 27.821259] ffff8881647fdc00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 27.821268] ==================================================================
This is caused because the ID extraction happens outside of the range of
the edid lenght. This commit addresses this issue by considering the
amd_vsdb_block size.
(cherry picked from commit b7e381b1ccd5e778e3d9c44c669ad38439a861d8) |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Deallocate DML memory if allocation fails
[Why]
When DC state create DML memory allocation fails, memory is not
deallocated subsequently, resulting in uninitialized structure
that is not NULL.
[How]
Deallocate memory if DML memory allocation fails. |
In the Linux kernel, the following vulnerability has been resolved:
net/xen-netback: prevent UAF in xenvif_flush_hash()
During the list_for_each_entry_rcu iteration call of xenvif_flush_hash,
kfree_rcu does not exist inside the rcu read critical section, so if
kfree_rcu is called when the rcu grace period ends during the iteration,
UAF occurs when accessing head->next after the entry becomes free.
Therefore, to solve this, you need to change it to list_for_each_entry_safe. |