| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Win32K - GRFX allows an authorized attacker to elevate privileges locally. |
| Use after free in Windows Message Queuing allows an unauthorized attacker to execute code over a network. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows SMB allows an unauthorized attacker to execute code over a network. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Hyper-V allows an authorized attacker to elevate privileges locally. |
| Use after free in Remote Access Point-to-Point Protocol (PPP) EAP-TLS allows an authorized attacker to elevate privileges locally. |
| Use after free in Desktop Windows Manager allows an authorized attacker to elevate privileges locally. |
| Use after free in Windows Kernel allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Graphics Component allows an authorized attacker to elevate privileges locally. |
| Use after free in Microsoft Office PowerPoint allows an unauthorized attacker to execute code locally. |
| Use after free in Microsoft Office Visio allows an unauthorized attacker to execute code locally. |
| A race condition leading to a stack use-after-free flaw was found in libvirt. Due to a bad assumption in the virNetClientIOEventLoop() method, the `data` pointer to a stack-allocated virNetClientIOEventData structure ended up being used in the virNetClientIOEventFD callback while the data pointer's stack frame was concurrently being "freed" when returning from virNetClientIOEventLoop(). The 'virtproxyd' daemon can be used to trigger requests. If libvirt is configured with fine-grained access control, this issue, in theory, allows a user to escape their otherwise limited access. This flaw allows a local, unprivileged user to access virtproxyd without authenticating. Remote users would need to authenticate before they could access it. |
| A use-after-free issue was addressed with improved memory management. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7.6, macOS Sonoma 14.7.5, iOS 18.4 and iPadOS 18.4, visionOS 2.4. An attacker on the local network may be able to corrupt process memory. |
| A use-after-free flaw was found in the Linux kernel's netfilter in the way a user triggers the nft_pipapo_remove function with the element, without a NFT_SET_EXT_KEY_END. This issue could allow a local user to crash the system or potentially escalate their privileges on the system. |
| Use after free in Connected Devices Platform Service (Cdpsvc) allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: zfcp: Fix double free of FSF request when qdio send fails
We used to use the wrong type of integer in 'zfcp_fsf_req_send()' to cache
the FSF request ID when sending a new FSF request. This is used in case the
sending fails and we need to remove the request from our internal hash
table again (so we don't keep an invalid reference and use it when we free
the request again).
In 'zfcp_fsf_req_send()' we used to cache the ID as 'int' (signed and 32
bit wide), but the rest of the zfcp code (and the firmware specification)
handles the ID as 'unsigned long'/'u64' (unsigned and 64 bit wide [s390x
ELF ABI]). For one this has the obvious problem that when the ID grows
past 32 bit (this can happen reasonably fast) it is truncated to 32 bit
when storing it in the cache variable and so doesn't match the original ID
anymore. The second less obvious problem is that even when the original ID
has not yet grown past 32 bit, as soon as the 32nd bit is set in the
original ID (0x80000000 = 2'147'483'648) we will have a mismatch when we
cast it back to 'unsigned long'. As the cached variable is of a signed
type, the compiler will choose a sign-extending instruction to load the 32
bit variable into a 64 bit register (e.g.: 'lgf %r11,188(%r15)'). So once
we pass the cached variable into 'zfcp_reqlist_find_rm()' to remove the
request again all the leading zeros will be flipped to ones to extend the
sign and won't match the original ID anymore (this has been observed in
practice).
If we can't successfully remove the request from the hash table again after
'zfcp_qdio_send()' fails (this happens regularly when zfcp cannot notify
the adapter about new work because the adapter is already gone during
e.g. a ChpID toggle) we will end up with a double free. We unconditionally
free the request in the calling function when 'zfcp_fsf_req_send()' fails,
but because the request is still in the hash table we end up with a stale
memory reference, and once the zfcp adapter is either reset during recovery
or shutdown we end up freeing the same memory twice.
The resulting stack traces vary depending on the kernel and have no direct
correlation to the place where the bug occurs. Here are three examples that
have been seen in practice:
list_del corruption. next->prev should be 00000001b9d13800, but was 00000000dead4ead. (next=00000001bd131a00)
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:62!
monitor event: 0040 ilc:2 [#1] PREEMPT SMP
Modules linked in: ...
CPU: 9 PID: 1617 Comm: zfcperp0.0.1740 Kdump: loaded
Hardware name: ...
Krnl PSW : 0704d00180000000 00000003cbeea1f8 (__list_del_entry_valid+0x98/0x140)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: 00000000916d12f1 0000000080000000 000000000000006d 00000003cb665cd6
0000000000000001 0000000000000000 0000000000000000 00000000d28d21e8
00000000d3844000 00000380099efd28 00000001bd131a00 00000001b9d13800
00000000d3290100 0000000000000000 00000003cbeea1f4 00000380099efc70
Krnl Code: 00000003cbeea1e8: c020004f68a7 larl %r2,00000003cc8d7336
00000003cbeea1ee: c0e50027fd65 brasl %r14,00000003cc3e9cb8
#00000003cbeea1f4: af000000 mc 0,0
>00000003cbeea1f8: c02000920440 larl %r2,00000003cd12aa78
00000003cbeea1fe: c0e500289c25 brasl %r14,00000003cc3fda48
00000003cbeea204: b9040043 lgr %r4,%r3
00000003cbeea208: b9040051 lgr %r5,%r1
00000003cbeea20c: b9040032 lgr %r3,%r2
Call Trace:
[<00000003cbeea1f8>] __list_del_entry_valid+0x98/0x140
([<00000003cbeea1f4>] __list_del_entry_valid+0x94/0x140)
[<000003ff7ff502fe>] zfcp_fsf_req_dismiss_all+0xde/0x150 [zfcp]
[<000003ff7ff49cd0>] zfcp_erp_strategy_do_action+0x160/0x280 [zfcp]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drbd: use after free in drbd_create_device()
The drbd_destroy_connection() frees the "connection" so use the _safe()
iterator to prevent a use after free. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: cdg: allow tcp_cdg_release() to be called multiple times
Apparently, mptcp is able to call tcp_disconnect() on an already
disconnected flow. This is generally fine, unless current congestion
control is CDG, because it might trigger a double-free [1]
Instead of fixing MPTCP, and future bugs, we can make tcp_disconnect()
more resilient.
[1]
BUG: KASAN: double-free in slab_free mm/slub.c:3539 [inline]
BUG: KASAN: double-free in kfree+0xe2/0x580 mm/slub.c:4567
CPU: 0 PID: 3645 Comm: kworker/0:7 Not tainted 6.0.0-syzkaller-02734-g0326074ff465 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022
Workqueue: events mptcp_worker
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:317 [inline]
print_report.cold+0x2ba/0x719 mm/kasan/report.c:433
kasan_report_invalid_free+0x81/0x190 mm/kasan/report.c:462
____kasan_slab_free+0x18b/0x1c0 mm/kasan/common.c:356
kasan_slab_free include/linux/kasan.h:200 [inline]
slab_free_hook mm/slub.c:1759 [inline]
slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1785
slab_free mm/slub.c:3539 [inline]
kfree+0xe2/0x580 mm/slub.c:4567
tcp_disconnect+0x980/0x1e20 net/ipv4/tcp.c:3145
__mptcp_close_ssk+0x5ca/0x7e0 net/mptcp/protocol.c:2327
mptcp_do_fastclose net/mptcp/protocol.c:2592 [inline]
mptcp_worker+0x78c/0xff0 net/mptcp/protocol.c:2627
process_one_work+0x991/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
Allocated by task 3671:
kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:45 [inline]
set_alloc_info mm/kasan/common.c:437 [inline]
____kasan_kmalloc mm/kasan/common.c:516 [inline]
____kasan_kmalloc mm/kasan/common.c:475 [inline]
__kasan_kmalloc+0xa9/0xd0 mm/kasan/common.c:525
kmalloc_array include/linux/slab.h:640 [inline]
kcalloc include/linux/slab.h:671 [inline]
tcp_cdg_init+0x10d/0x170 net/ipv4/tcp_cdg.c:380
tcp_init_congestion_control+0xab/0x550 net/ipv4/tcp_cong.c:193
tcp_reinit_congestion_control net/ipv4/tcp_cong.c:217 [inline]
tcp_set_congestion_control+0x96c/0xaa0 net/ipv4/tcp_cong.c:391
do_tcp_setsockopt+0x505/0x2320 net/ipv4/tcp.c:3513
tcp_setsockopt+0xd4/0x100 net/ipv4/tcp.c:3801
mptcp_setsockopt+0x35f/0x2570 net/mptcp/sockopt.c:844
__sys_setsockopt+0x2d6/0x690 net/socket.c:2252
__do_sys_setsockopt net/socket.c:2263 [inline]
__se_sys_setsockopt net/socket.c:2260 [inline]
__x64_sys_setsockopt+0xba/0x150 net/socket.c:2260
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 16:
kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
kasan_set_track+0x21/0x30 mm/kasan/common.c:45
kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370
____kasan_slab_free mm/kasan/common.c:367 [inline]
____kasan_slab_free+0x166/0x1c0 mm/kasan/common.c:329
kasan_slab_free include/linux/kasan.h:200 [inline]
slab_free_hook mm/slub.c:1759 [inline]
slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1785
slab_free mm/slub.c:3539 [inline]
kfree+0xe2/0x580 mm/slub.c:4567
tcp_cleanup_congestion_control+0x70/0x120 net/ipv4/tcp_cong.c:226
tcp_v4_destroy_sock+0xdd/0x750 net/ipv4/tcp_ipv4.c:2254
tcp_v6_destroy_sock+0x11/0x20 net/ipv6/tcp_ipv6.c:1969
inet_csk_destroy_sock+0x196/0x440 net/ipv4/inet_connection_sock.c:1157
tcp_done+0x23b/0x340 net/ipv4/tcp.c:4649
tcp_rcv_state_process+0x40e7/0x4990 net/ipv4/tcp_input.c:6624
tcp_v6_do_rcv+0x3fc/0x13c0 net/ipv6/tcp_ipv6.c:1525
tcp_v6_rcv+0x2e8e/0x3830 net/ipv6/tcp_ipv6.c:1759
ip6_protocol_deliver_rcu+0x2db/0x1950 net/ipv6/ip6_input.c:439
ip6_input_finish+0x14c/0x2c0 net/ipv6/ip6_input.c:484
NF_HOOK include/linux/netfilter.h:302 [inline]
NF_HOOK include/linux/netfilter.h:296 [inline]
ip6_input+0x9c/0xd
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
kprobes: Skip clearing aggrprobe's post_handler in kprobe-on-ftrace case
In __unregister_kprobe_top(), if the currently unregistered probe has
post_handler but other child probes of the aggrprobe do not have
post_handler, the post_handler of the aggrprobe is cleared. If this is
a ftrace-based probe, there is a problem. In later calls to
disarm_kprobe(), we will use kprobe_ftrace_ops because post_handler is
NULL. But we're armed with kprobe_ipmodify_ops. This triggers a WARN in
__disarm_kprobe_ftrace() and may even cause use-after-free:
Failed to disarm kprobe-ftrace at kernel_clone+0x0/0x3c0 (error -2)
WARNING: CPU: 5 PID: 137 at kernel/kprobes.c:1135 __disarm_kprobe_ftrace.isra.21+0xcf/0xe0
Modules linked in: testKprobe_007(-)
CPU: 5 PID: 137 Comm: rmmod Not tainted 6.1.0-rc4-dirty #18
[...]
Call Trace:
<TASK>
__disable_kprobe+0xcd/0xe0
__unregister_kprobe_top+0x12/0x150
? mutex_lock+0xe/0x30
unregister_kprobes.part.23+0x31/0xa0
unregister_kprobe+0x32/0x40
__x64_sys_delete_module+0x15e/0x260
? do_user_addr_fault+0x2cd/0x6b0
do_syscall_64+0x3a/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
For the kprobe-on-ftrace case, we keep the post_handler setting to
identify this aggrprobe armed with kprobe_ipmodify_ops. This way we
can disarm it correctly. |
| A double-free vulnerability was found in handling vmw_buffer_object objects in the vmwgfx driver in the Linux kernel. This issue occurs due to the lack of validating the existence of an object prior to performing further free operations on the object, which may allow a local privileged user to escalate privileges and execute code in the context of the kernel. |
| A use-after-free vulnerability was found in the siano smsusb module in the Linux kernel. The bug occurs during device initialization when the siano device is plugged in. This flaw allows a local user to crash the system, causing a denial of service condition. |