CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ntb_netdev: Use dev_kfree_skb_any() in interrupt context
TX/RX callback handlers (ntb_netdev_tx_handler(),
ntb_netdev_rx_handler()) can be called in interrupt
context via the DMA framework when the respective
DMA operations have completed. As such, any calls
by these routines to free skb's, should use the
interrupt context safe dev_kfree_skb_any() function.
Previously, these callback handlers would call the
interrupt unsafe version of dev_kfree_skb(). This has
not presented an issue on Intel IOAT DMA engines as
that driver utilizes tasklets rather than a hard
interrupt handler, like the AMD PTDMA DMA driver.
On AMD systems, a kernel WARNING message is
encountered, which is being issued from
skb_release_head_state() due to in_hardirq()
being true.
Besides the user visible WARNING from the kernel,
the other symptom of this bug was that TCP/IP performance
across the ntb_netdev interface was very poor, i.e.
approximately an order of magnitude below what was
expected. With the repair to use dev_kfree_skb_any(),
kernel WARNINGs from skb_release_head_state() ceased
and TCP/IP performance, as measured by iperf, was on
par with expected results, approximately 20 Gb/s on
AMD Milan based server. Note that this performance
is comparable with Intel based servers. |
In the Linux kernel, the following vulnerability has been resolved:
cnic: Fix use-after-free bugs in cnic_delete_task
The original code uses cancel_delayed_work() in cnic_cm_stop_bnx2x_hw(),
which does not guarantee that the delayed work item 'delete_task' has
fully completed if it was already running. Additionally, the delayed work
item is cyclic, the flush_workqueue() in cnic_cm_stop_bnx2x_hw() only
blocks and waits for work items that were already queued to the
workqueue prior to its invocation. Any work items submitted after
flush_workqueue() is called are not included in the set of tasks that the
flush operation awaits. This means that after the cyclic work items have
finished executing, a delayed work item may still exist in the workqueue.
This leads to use-after-free scenarios where the cnic_dev is deallocated
by cnic_free_dev(), while delete_task remains active and attempt to
dereference cnic_dev in cnic_delete_task().
A typical race condition is illustrated below:
CPU 0 (cleanup) | CPU 1 (delayed work callback)
cnic_netdev_event() |
cnic_stop_hw() | cnic_delete_task()
cnic_cm_stop_bnx2x_hw() | ...
cancel_delayed_work() | /* the queue_delayed_work()
flush_workqueue() | executes after flush_workqueue()*/
| queue_delayed_work()
cnic_free_dev(dev)//free | cnic_delete_task() //new instance
| dev = cp->dev; //use
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the cyclic delayed work item is properly canceled and that any
ongoing execution of the work item completes before the cnic_dev is
deallocated. Furthermore, since cancel_delayed_work_sync() uses
__flush_work(work, true) to synchronously wait for any currently
executing instance of the work item to finish, the flush_workqueue()
becomes redundant and should be removed.
This bug was identified through static analysis. To reproduce the issue
and validate the fix, I simulated the cnic PCI device in QEMU and
introduced intentional delays — such as inserting calls to ssleep()
within the cnic_delete_task() function — to increase the likelihood
of triggering the bug. |
In the Linux kernel, the following vulnerability has been resolved:
coresight: cti: Fix hang in cti_disable_hw()
cti_enable_hw() and cti_disable_hw() are called from an atomic context
so shouldn't use runtime PM because it can result in a sleep when
communicating with firmware.
Since commit 3c6656337852 ("Revert "firmware: arm_scmi: Add clock
management to the SCMI power domain""), this causes a hang on Juno when
running the Perf Coresight tests or running this command:
perf record -e cs_etm//u -- ls
This was also missed until the revert commit because pm_runtime_put()
was called with the wrong device until commit 692c9a499b28 ("coresight:
cti: Correct the parameter for pm_runtime_put")
With lock and scheduler debugging enabled the following is output:
coresight cti_sys0: cti_enable_hw -- dev:cti_sys0 parent: 20020000.cti
BUG: sleeping function called from invalid context at drivers/base/power/runtime.c:1151
in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 330, name: perf-exec
preempt_count: 2, expected: 0
RCU nest depth: 0, expected: 0
INFO: lockdep is turned off.
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffff80000822b394>] copy_process+0xa0c/0x1948
softirqs last enabled at (0): [<ffff80000822b394>] copy_process+0xa0c/0x1948
softirqs last disabled at (0): [<0000000000000000>] 0x0
CPU: 3 PID: 330 Comm: perf-exec Not tainted 6.0.0-00053-g042116d99298 #7
Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Sep 13 2022
Call trace:
dump_backtrace+0x134/0x140
show_stack+0x20/0x58
dump_stack_lvl+0x8c/0xb8
dump_stack+0x18/0x34
__might_resched+0x180/0x228
__might_sleep+0x50/0x88
__pm_runtime_resume+0xac/0xb0
cti_enable+0x44/0x120
coresight_control_assoc_ectdev+0xc0/0x150
coresight_enable_path+0xb4/0x288
etm_event_start+0x138/0x170
etm_event_add+0x48/0x70
event_sched_in.isra.122+0xb4/0x280
merge_sched_in+0x1fc/0x3d0
visit_groups_merge.constprop.137+0x16c/0x4b0
ctx_sched_in+0x114/0x1f0
perf_event_sched_in+0x60/0x90
ctx_resched+0x68/0xb0
perf_event_exec+0x138/0x508
begin_new_exec+0x52c/0xd40
load_elf_binary+0x6b8/0x17d0
bprm_execve+0x360/0x7f8
do_execveat_common.isra.47+0x218/0x238
__arm64_sys_execve+0x48/0x60
invoke_syscall+0x4c/0x110
el0_svc_common.constprop.4+0xfc/0x120
do_el0_svc+0x34/0xc0
el0_svc+0x40/0x98
el0t_64_sync_handler+0x98/0xc0
el0t_64_sync+0x170/0x174
Fix the issue by removing the runtime PM calls completely. They are not
needed here because it must have already been done when building the
path for a trace.
[ Fix build warnings ] |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Propagate error from htab_lock_bucket() to userspace
In __htab_map_lookup_and_delete_batch() if htab_lock_bucket() returns
-EBUSY, it will go to next bucket. Going to next bucket may not only
skip the elements in current bucket silently, but also incur
out-of-bound memory access or expose kernel memory to userspace if
current bucket_cnt is greater than bucket_size or zero.
Fixing it by stopping batch operation and returning -EBUSY when
htab_lock_bucket() fails, and the application can retry or skip the busy
batch as needed. |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: smbdirect: validate data_offset and data_length field of smb_direct_data_transfer
If data_offset and data_length of smb_direct_data_transfer struct are
invalid, out of bounds issue could happen.
This patch validate data_offset and data_length field in recv_done. |
In the Linux kernel, the following vulnerability has been resolved:
zram: fix slot write race condition
Parallel concurrent writes to the same zram index result in leaked
zsmalloc handles. Schematically we can have something like this:
CPU0 CPU1
zram_slot_lock()
zs_free(handle)
zram_slot_lock()
zram_slot_lock()
zs_free(handle)
zram_slot_lock()
compress compress
handle = zs_malloc() handle = zs_malloc()
zram_slot_lock
zram_set_handle(handle)
zram_slot_lock
zram_slot_lock
zram_set_handle(handle)
zram_slot_lock
Either CPU0 or CPU1 zsmalloc handle will leak because zs_free() is done
too early. In fact, we need to reset zram entry right before we set its
new handle, all under the same slot lock scope. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: add EXT4_IGET_BAD flag to prevent unexpected bad inode
There are many places that will get unhappy (and crash) when ext4_iget()
returns a bad inode. However, if iget the boot loader inode, allows a bad
inode to be returned, because the inode may not be initialized. This
mechanism can be used to bypass some checks and cause panic. To solve this
problem, we add a special iget flag EXT4_IGET_BAD. Only with this flag
we'd be returning bad inode from ext4_iget(), otherwise we always return
the error code if the inode is bad inode.(suggested by Jan Kara) |
In the Linux kernel, the following vulnerability has been resolved:
crypto: ccp - Always pass in an error pointer to __sev_platform_shutdown_locked()
When
9770b428b1a2 ("crypto: ccp - Move dev_info/err messages for SEV/SNP init and shutdown")
moved the error messages dumping so that they don't need to be issued by
the callers, it missed the case where __sev_firmware_shutdown() calls
__sev_platform_shutdown_locked() with a NULL argument which leads to
a NULL ptr deref on the shutdown path, during suspend to disk:
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 0 UID: 0 PID: 983 Comm: hib.sh Not tainted 6.17.0-rc4+ #1 PREEMPT(voluntary)
Hardware name: Supermicro Super Server/H12SSL-i, BIOS 2.5 09/08/2022
RIP: 0010:__sev_platform_shutdown_locked.cold+0x0/0x21 [ccp]
That rIP is:
00000000000006fd <__sev_platform_shutdown_locked.cold>:
6fd: 8b 13 mov (%rbx),%edx
6ff: 48 8b 7d 00 mov 0x0(%rbp),%rdi
703: 89 c1 mov %eax,%ecx
Code: 74 05 31 ff 41 89 3f 49 8b 3e 89 ea 48 c7 c6 a0 8e 54 a0 41 bf 92 ff ff ff e8 e5 2e 09 e1 c6 05 2a d4 38 00 01 e9 26 af ff ff <8b> 13 48 8b 7d 00 89 c1 48 c7 c6 18 90 54 a0 89 44 24 04 e8 c1 2e
RSP: 0018:ffffc90005467d00 EFLAGS: 00010282
RAX: 00000000ffffff92 RBX: 0000000000000000 RCX: 0000000000000000
^^^^^^^^^^^^^^^^
and %rbx is nice and clean.
Call Trace:
<TASK>
__sev_firmware_shutdown.isra.0
sev_dev_destroy
psp_dev_destroy
sp_destroy
pci_device_shutdown
device_shutdown
kernel_power_off
hibernate.cold
state_store
kernfs_fop_write_iter
vfs_write
ksys_write
do_syscall_64
entry_SYSCALL_64_after_hwframe
Pass in a pointer to the function-local error var in the caller.
With that addressed, suspending the ccp shows the error properly at
least:
ccp 0000:47:00.1: sev command 0x2 timed out, disabling PSP
ccp 0000:47:00.1: SEV: failed to SHUTDOWN error 0x0, rc -110
SEV-SNP: Leaking PFN range 0x146800-0x146a00
SEV-SNP: PFN 0x146800 unassigned, dumping non-zero entries in 2M PFN region: [0x146800 - 0x146a00]
...
ccp 0000:47:00.1: SEV-SNP firmware shutdown failed, rc -16, error 0x0
ACPI: PM: Preparing to enter system sleep state S5
kvm: exiting hardware virtualization
reboot: Power down
Btw, this driver is crying to be cleaned up to pass in a proper I/O
struct which can be used to store information between the different
functions, otherwise stuff like that will happen in the future again. |
In the Linux kernel, the following vulnerability has been resolved:
drm: bridge: anx7625: Fix NULL pointer dereference with early IRQ
If the interrupt occurs before resource initialization is complete, the
interrupt handler/worker may access uninitialized data such as the I2C
tcpc_client device, potentially leading to NULL pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: let recv_done verify data_offset, data_length and remaining_data_length
This is inspired by the related server fixes. |
In fetchmail before 6.5.6, the SMTP client can crash when authenticating upon receiving a 334 status code in a malformed context. |
NiceGUI is a Python-based UI framework. Versions 2.24.2 and below are at risk for Cross-Site Scripting (XSS) when developers render unescaped user input into the DOM using ui.html(). NiceGUI did not enforce HTML or JavaScript sanitization, so applications that directly combine components like ui.input() with ui.html() or ui.chat_message with HTML content without escaping may allow attackers to execute arbitrary JavaScript in the user’s browser. Applications that do not pass untrusted input into ui.html() are not affected. This issue is fixed in version 3.0.0. |
The Restrict User Registration plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0.1. This is due to missing or incorrect nonce validation on the update() function. This makes it possible for unauthenticated attackers to update the plugin's settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The Woo superb slideshow transition gallery with random effect plugin for WordPress is vulnerable to SQL Injection via the 'woo-superb-slideshow' shortcode in all versions up to, and including, 9.1 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
The Mobile Site Redirect plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.2.1. This is due to missing or incorrect nonce validation on a function. This makes it possible for unauthenticated attackers to update settings and inject malicious web scripts via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The Backup Bolt plugin for WordPress is vulnerable to arbitrary file downloads and backup location writes in all versions up to, and including, 1.4.1 via the process_backup_batch() function. This makes it possible for authenticated attackers, with Administrator-level access and above, to download directories outside of the webroot and write backup zip files to arbitrary locations. |
The Event Tickets, RSVPs, Calendar plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'ticket_spot' shortcode in all versions up to, and including, 1.0.2 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The Smart Docs plugin for WordPress is vulnerable to Stored Cross-Site Scripting via admin settings in all versions up to, and including, 1.1.1 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled. |
The Wp cycle text announcement plugin for WordPress is vulnerable to SQL Injection via the 'cycle-text' shortcode in all versions up to, and including, 8.1 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
The Unify plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin for WordPress's unify_checkout shortcode in all versions up to, and including, 3.4.7 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |