CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: fix null pointer dereference on pointer cs_desc
The pointer cs_desc return from snd_usb_find_clock_source could
be null, so there is a potential null pointer dereference issue.
Fix this by adding a null check before dereference. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: gus: fix null pointer dereference on pointer block
The pointer block return from snd_gf1_dma_next_block could be
null, so there is a potential null pointer dereference issue.
Fix this by adding a null check before dereference. |
In the Linux kernel, the following vulnerability has been resolved:
usb: host: ohci-tmio: check return value after calling platform_get_resource()
It will cause null-ptr-deref if platform_get_resource() returns NULL,
we need check the return value. |
In the Linux kernel, the following vulnerability has been resolved:
thermal: Fix NULL pointer dereferences in of_thermal_ functions
of_parse_thermal_zones() parses the thermal-zones node and registers a
thermal_zone device for each subnode. However, if a thermal zone is
consuming a thermal sensor and that thermal sensor device hasn't probed
yet, an attempt to set trip_point_*_temp for that thermal zone device
can cause a NULL pointer dereference. Fix it.
console:/sys/class/thermal/thermal_zone87 # echo 120000 > trip_point_0_temp
...
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020
...
Call trace:
of_thermal_set_trip_temp+0x40/0xc4
trip_point_temp_store+0xc0/0x1dc
dev_attr_store+0x38/0x88
sysfs_kf_write+0x64/0xc0
kernfs_fop_write_iter+0x108/0x1d0
vfs_write+0x2f4/0x368
ksys_write+0x7c/0xec
__arm64_sys_write+0x20/0x30
el0_svc_common.llvm.7279915941325364641+0xbc/0x1bc
do_el0_svc+0x28/0xa0
el0_svc+0x14/0x24
el0_sync_handler+0x88/0xec
el0_sync+0x1c0/0x200
While at it, fix the possible NULL pointer dereference in other
functions as well: of_thermal_get_temp(), of_thermal_set_emul_temp(),
of_thermal_get_trend(). |
In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix NULL ptr dereference on VSI filter sync
Remove the reason of null pointer dereference in sync VSI filters.
Added new I40E_VSI_RELEASING flag to signalize deleting and releasing
of VSI resources to sync this thread with sync filters subtask.
Without this patch it is possible to start update the VSI filter list
after VSI is removed, that's causing a kernel oops. |
In the Linux kernel, the following vulnerability has been resolved:
serial: rp2: use 'request_firmware' instead of 'request_firmware_nowait'
In 'rp2_probe', the driver registers 'rp2_uart_interrupt' then calls
'rp2_fw_cb' through 'request_firmware_nowait'. In 'rp2_fw_cb', if the
firmware don't exists, function just return without initializing ports
of 'rp2_card'. But now the interrupt handler function has been
registered, and when an interrupt comes, 'rp2_uart_interrupt' may access
those ports then causing NULL pointer dereference or other bugs.
Because the driver does some initialization work in 'rp2_fw_cb', in
order to make the driver ready to handle interrupts, 'request_firmware'
should be used instead of asynchronous 'request_firmware_nowait'.
This report reveals it:
INFO: trying to register non-static key.
the code is fine but needs lockdep annotation.
turning off the locking correctness validator.
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 4.19.177-gdba4159c14ef-dirty #45
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-
gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0xec/0x156 lib/dump_stack.c:118
assign_lock_key kernel/locking/lockdep.c:727 [inline]
register_lock_class+0x14e5/0x1ba0 kernel/locking/lockdep.c:753
__lock_acquire+0x187/0x3750 kernel/locking/lockdep.c:3303
lock_acquire+0x124/0x340 kernel/locking/lockdep.c:3907
__raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline]
_raw_spin_lock+0x32/0x50 kernel/locking/spinlock.c:144
spin_lock include/linux/spinlock.h:329 [inline]
rp2_ch_interrupt drivers/tty/serial/rp2.c:466 [inline]
rp2_asic_interrupt.isra.9+0x15d/0x990 drivers/tty/serial/rp2.c:493
rp2_uart_interrupt+0x49/0xe0 drivers/tty/serial/rp2.c:504
__handle_irq_event_percpu+0xfb/0x770 kernel/irq/handle.c:149
handle_irq_event_percpu+0x79/0x150 kernel/irq/handle.c:189
handle_irq_event+0xac/0x140 kernel/irq/handle.c:206
handle_fasteoi_irq+0x232/0x5c0 kernel/irq/chip.c:725
generic_handle_irq_desc include/linux/irqdesc.h:155 [inline]
handle_irq+0x230/0x3a0 arch/x86/kernel/irq_64.c:87
do_IRQ+0xa7/0x1e0 arch/x86/kernel/irq.c:247
common_interrupt+0xf/0xf arch/x86/entry/entry_64.S:670
</IRQ>
RIP: 0010:native_safe_halt+0x28/0x30 arch/x86/include/asm/irqflags.h:61
Code: 00 00 55 be 04 00 00 00 48 c7 c7 00 c2 2f 8c 48 89 e5 e8 fb 31 e7 f8
8b 05 75 af 8d 03 85 c0 7e 07 0f 00 2d 8a 61 65 00 fb f4 <5d> c3 90 90 90
90 90 90 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 41
RSP: 0018:ffff88806b71fcc8 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffde
RAX: 0000000000000000 RBX: ffffffff8bde7e48 RCX: ffffffff88a21285
RDX: 0000000000000000 RSI: 0000000000000004 RDI: ffffffff8c2fc200
RBP: ffff88806b71fcc8 R08: fffffbfff185f840 R09: fffffbfff185f840
R10: 0000000000000001 R11: fffffbfff185f840 R12: 0000000000000002
R13: ffffffff8bea18a0 R14: 0000000000000000 R15: 0000000000000000
arch_safe_halt arch/x86/include/asm/paravirt.h:94 [inline]
default_idle+0x6f/0x360 arch/x86/kernel/process.c:557
arch_cpu_idle+0xf/0x20 arch/x86/kernel/process.c:548
default_idle_call+0x3b/0x60 kernel/sched/idle.c:93
cpuidle_idle_call kernel/sched/idle.c:153 [inline]
do_idle+0x2ab/0x3c0 kernel/sched/idle.c:263
cpu_startup_entry+0xcb/0xe0 kernel/sched/idle.c:369
start_secondary+0x3b8/0x4e0 arch/x86/kernel/smpboot.c:271
secondary_startup_64+0xa4/0xb0 arch/x86/kernel/head_64.S:243
BUG: unable to handle kernel NULL pointer dereference at 0000000000000010
PGD 8000000056d27067 P4D 8000000056d27067 PUD 56d28067 PMD 0
Oops: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 4.19.177-gdba4159c14ef-dirty #45
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-
gc9ba5276e321-prebuilt.qemu.org 04/01/2014
RIP: 0010:readl arch/x86/include/asm/io.h:59 [inline]
RIP: 0010:rp2_ch_interrupt drivers/tty/serial/rp2.c:472 [inline]
RIP: 0010:rp2_asic_interrupt.isra.9+0x181/0x990 drivers/tty/serial/rp2.c:
493
Co
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix null deref accessing lag dev
It could be the lag dev is null so stop processing the event.
In bond_enslave() the active/backup slave being set before setting the
upper dev so first event is without an upper dev.
After setting the upper dev with bond_master_upper_dev_link() there is
a second event and in that event we have an upper dev. |
In the Linux kernel, the following vulnerability has been resolved:
net: fujitsu: fix potential null-ptr-deref
In fmvj18x_get_hwinfo(), if ioremap fails there will be NULL pointer
deref. To fix this, check the return value of ioremap and return -1
to the caller in case of failure. |
In the Linux kernel, the following vulnerability has been resolved:
gve: Add NULL pointer checks when freeing irqs.
When freeing notification blocks, we index priv->msix_vectors.
If we failed to allocate priv->msix_vectors (see abort_with_msix_vectors)
this could lead to a NULL pointer dereference if the driver is unloaded. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/amd: Clear DMA ops when switching domain
Since commit 08a27c1c3ecf ("iommu: Add support to change default domain
of an iommu group") a user can switch a device between IOMMU and direct
DMA through sysfs. This doesn't work for AMD IOMMU at the moment because
dev->dma_ops is not cleared when switching from a DMA to an identity
IOMMU domain. The DMA layer thus attempts to use the dma-iommu ops on an
identity domain, causing an oops:
# echo 0000:00:05.0 > /sys/sys/bus/pci/drivers/e1000e/unbind
# echo identity > /sys/bus/pci/devices/0000:00:05.0/iommu_group/type
# echo 0000:00:05.0 > /sys/sys/bus/pci/drivers/e1000e/bind
...
BUG: kernel NULL pointer dereference, address: 0000000000000028
...
Call Trace:
iommu_dma_alloc
e1000e_setup_tx_resources
e1000e_open
Since iommu_change_dev_def_domain() calls probe_finalize() again, clear
the dma_ops there like Vt-d does. |
In the Linux kernel, the following vulnerability has been resolved:
efi/fdt: fix panic when no valid fdt found
setup_arch() would invoke efi_init()->efi_get_fdt_params(). If no
valid fdt found then initial_boot_params will be null. So we
should stop further fdt processing here. I encountered this
issue on risc-v. |
In the Linux kernel, the following vulnerability has been resolved:
ice: track AF_XDP ZC enabled queues in bitmap
Commit c7a219048e45 ("ice: Remove xsk_buff_pool from VSI structure")
silently introduced a regression and broke the Tx side of AF_XDP in copy
mode. xsk_pool on ice_ring is set only based on the existence of the XDP
prog on the VSI which in turn picks ice_clean_tx_irq_zc to be executed.
That is not something that should happen for copy mode as it should use
the regular data path ice_clean_tx_irq.
This results in a following splat when xdpsock is run in txonly or l2fwd
scenarios in copy mode:
<snip>
[ 106.050195] BUG: kernel NULL pointer dereference, address: 0000000000000030
[ 106.057269] #PF: supervisor read access in kernel mode
[ 106.062493] #PF: error_code(0x0000) - not-present page
[ 106.067709] PGD 0 P4D 0
[ 106.070293] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 106.074721] CPU: 61 PID: 0 Comm: swapper/61 Not tainted 5.12.0-rc2+ #45
[ 106.081436] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019
[ 106.092027] RIP: 0010:xp_raw_get_dma+0x36/0x50
[ 106.096551] Code: 74 14 48 b8 ff ff ff ff ff ff 00 00 48 21 f0 48 c1 ee 30 48 01 c6 48 8b 87 90 00 00 00 48 89 f2 81 e6 ff 0f 00 00 48 c1 ea 0c <48> 8b 04 d0 48 83 e0 fe 48 01 f0 c3 66 66 2e 0f 1f 84 00 00 00 00
[ 106.115588] RSP: 0018:ffffc9000d694e50 EFLAGS: 00010206
[ 106.120893] RAX: 0000000000000000 RBX: ffff88984b8c8a00 RCX: ffff889852581800
[ 106.128137] RDX: 0000000000000006 RSI: 0000000000000000 RDI: ffff88984cd8b800
[ 106.135383] RBP: ffff888123b50001 R08: ffff889896800000 R09: 0000000000000800
[ 106.142628] R10: 0000000000000000 R11: ffffffff826060c0 R12: 00000000000000ff
[ 106.149872] R13: 0000000000000000 R14: 0000000000000040 R15: ffff888123b50018
[ 106.157117] FS: 0000000000000000(0000) GS:ffff8897e0f40000(0000) knlGS:0000000000000000
[ 106.165332] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 106.171163] CR2: 0000000000000030 CR3: 000000000560a004 CR4: 00000000007706e0
[ 106.178408] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 106.185653] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 106.192898] PKRU: 55555554
[ 106.195653] Call Trace:
[ 106.198143] <IRQ>
[ 106.200196] ice_clean_tx_irq_zc+0x183/0x2a0 [ice]
[ 106.205087] ice_napi_poll+0x3e/0x590 [ice]
[ 106.209356] __napi_poll+0x2a/0x160
[ 106.212911] net_rx_action+0xd6/0x200
[ 106.216634] __do_softirq+0xbf/0x29b
[ 106.220274] irq_exit_rcu+0x88/0xc0
[ 106.223819] common_interrupt+0x7b/0xa0
[ 106.227719] </IRQ>
[ 106.229857] asm_common_interrupt+0x1e/0x40
</snip>
Fix this by introducing the bitmap of queues that are zero-copy enabled,
where each bit, corresponding to a queue id that xsk pool is being
configured on, will be set/cleared within ice_xsk_pool_{en,dis}able and
checked within ice_xsk_pool(). The latter is a function used for
deciding which napi poll routine is executed.
Idea is being taken from our other drivers such as i40e and ixgbe. |
In the Linux kernel, the following vulnerability has been resolved:
HID: magicmouse: fix NULL-deref on disconnect
Commit 9d7b18668956 ("HID: magicmouse: add support for Apple Magic
Trackpad 2") added a sanity check for an Apple trackpad but returned
success instead of -ENODEV when the check failed. This means that the
remove callback will dereference the never-initialised driver data
pointer when the driver is later unbound (e.g. on USB disconnect). |
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: hdmi: Perform NULL pointer check for mtk_hdmi_conf
In commit 41ca9caaae0b
("drm/mediatek: hdmi: Add check for CEA modes only") a check
for CEA modes was added to function mtk_hdmi_bridge_mode_valid()
in order to address possible issues on MT8167;
moreover, with commit c91026a938c2
("drm/mediatek: hdmi: Add optional limit on maximal HDMI mode clock")
another similar check was introduced.
Unfortunately though, at the time of writing, MT8173 does not provide
any mtk_hdmi_conf structure and this is crashing the kernel with NULL
pointer upon entering mtk_hdmi_bridge_mode_valid(), which happens as
soon as a HDMI cable gets plugged in.
To fix this regression, add a NULL pointer check for hdmi->conf in the
said function, restoring HDMI functionality and avoiding NULL pointer
kernel panics. |
In the Linux kernel, the following vulnerability has been resolved:
ipmi: ssif: initialize ssif_info->client early
During probe ssif_info->client is dereferenced in error path. However,
it is set when some of the error checking has already been done. This
causes following kernel crash if an error path is taken:
[ 30.645593][ T674] ipmi_ssif 0-000e: ipmi_ssif: Not probing, Interface already present
[ 30.657616][ T674] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000088
...
[ 30.657723][ T674] pc : __dev_printk+0x28/0xa0
[ 30.657732][ T674] lr : _dev_err+0x7c/0xa0
...
[ 30.657772][ T674] Call trace:
[ 30.657775][ T674] __dev_printk+0x28/0xa0
[ 30.657778][ T674] _dev_err+0x7c/0xa0
[ 30.657781][ T674] ssif_probe+0x548/0x900 [ipmi_ssif 62ce4b08badc1458fd896206d9ef69a3c31f3d3e]
[ 30.657791][ T674] i2c_device_probe+0x37c/0x3c0
...
Initialize ssif_info->client before any error path can be taken. Clear
i2c_client data in the error path to prevent the dangling pointer from
leaking. |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: ideapad-laptop: fix a NULL pointer dereference
The third parameter of dytc_cql_command should not be NULL since it will
be dereferenced immediately. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qedf: Add pointer checks in qedf_update_link_speed()
The following trace was observed:
[ 14.042059] Call Trace:
[ 14.042061] <IRQ>
[ 14.042068] qedf_link_update+0x144/0x1f0 [qedf]
[ 14.042117] qed_link_update+0x5c/0x80 [qed]
[ 14.042135] qed_mcp_handle_link_change+0x2d2/0x410 [qed]
[ 14.042155] ? qed_set_ptt+0x70/0x80 [qed]
[ 14.042170] ? qed_set_ptt+0x70/0x80 [qed]
[ 14.042186] ? qed_rd+0x13/0x40 [qed]
[ 14.042205] qed_mcp_handle_events+0x437/0x690 [qed]
[ 14.042221] ? qed_set_ptt+0x70/0x80 [qed]
[ 14.042239] qed_int_sp_dpc+0x3a6/0x3e0 [qed]
[ 14.042245] tasklet_action_common.isra.14+0x5a/0x100
[ 14.042250] __do_softirq+0xe4/0x2f8
[ 14.042253] irq_exit+0xf7/0x100
[ 14.042255] do_IRQ+0x7f/0xd0
[ 14.042257] common_interrupt+0xf/0xf
[ 14.042259] </IRQ>
API qedf_link_update() is getting called from QED but by that time
shost_data is not initialised. This results in a NULL pointer dereference
when we try to dereference shost_data while updating supported_speeds.
Add a NULL pointer check before dereferencing shost_data. |
In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Use online_vcpus, not created_vcpus, to iterate over vCPUs
Use the kvm_for_each_vcpu() helper to iterate over vCPUs when encrypting
VMSAs for SEV, which effectively switches to use online_vcpus instead of
created_vcpus. This fixes a possible null-pointer dereference as
created_vcpus does not guarantee a vCPU exists, since it is updated at
the very beginning of KVM_CREATE_VCPU. created_vcpus exists to allow the
bulk of vCPU creation to run in parallel, while still correctly
restricting the max number of max vCPUs. |
In the Linux kernel, the following vulnerability has been resolved:
memory: renesas-rpc-if: fix possible NULL pointer dereference of resource
The platform_get_resource_byname() can return NULL which would be
immediately dereferenced by resource_size(). Instead dereference it
after validating the resource.
Addresses-Coverity: Dereference null return value |
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix null pointer dereference in lpfc_prep_els_iocb()
It is possible to call lpfc_issue_els_plogi() passing a did for which no
matching ndlp is found. A call is then made to lpfc_prep_els_iocb() with a
null pointer to a lpfc_nodelist structure resulting in a null pointer
dereference.
Fix by returning an error status if no valid ndlp is found. Fix up comments
regarding ndlp reference counting. |