CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
net: bcmgenet: Add a check for oversized packets
Occasionnaly we may get oversized packets from the hardware which
exceed the nomimal 2KiB buffer size we allocate SKBs with. Add an early
check which drops the packet to avoid invoking skb_over_panic() and move
on to processing the next packet. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix incomplete state save in rxe_requester
If a send packet is dropped by the IP layer in rxe_requester()
the call to rxe_xmit_packet() can fail with err == -EAGAIN.
To recover, the state of the wqe is restored to the state before
the packet was sent so it can be resent. However, the routines
that save and restore the state miss a significnt part of the
variable state in the wqe, the dma struct which is used to process
through the sge table. And, the state is not saved before the packet
is built which modifies the dma struct.
Under heavy stress testing with many QPs on a fast node sending
large messages to a slow node dropped packets are observed and
the resent packets are corrupted because the dma struct was not
restored. This patch fixes this behavior and allows the test cases
to succeed. |
In the Linux kernel, the following vulnerability has been resolved:
ARM: dts: exynos: Use Exynos5420 compatible for the MIPI video phy
For some reason, the driver adding support for Exynos5420 MIPI phy
back in 2016 wasn't used on Exynos5420, which caused a kernel panic.
Add the proper compatible for it. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: u_serial: Add null pointer check in gserial_resume
Consider a case where gserial_disconnect has already cleared
gser->ioport. And if a wakeup interrupt triggers afterwards,
gserial_resume gets called, which will lead to accessing of
gser->ioport and thus causing null pointer dereference.Add
a null pointer check to prevent this.
Added a static spinlock to prevent gser->ioport from becoming
null after the newly added check. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the cuobjdump binary where a user may cause an out-of-bounds read by passing a malformed ELF file to cuobjdump. A successful exploit of this vulnerability may lead to a partial denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvJPEG where a local authenticated user may cause a divide by zero error by submitting a specially crafted JPEG file. A successful exploit of this vulnerability may lead to denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvJPEG where a local authenticated user may cause a GPU out-of-bounds write by providing certain image dimensions. A successful exploit of this vulnerability may lead to denial of service and information disclosure. |
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvdisasm where an attacker may cause a heap-based buffer overflow by getting the user to run nvdisasm on a malicious ELF file. A successful exploit of this vulnerability may lead to arbitrary code execution at the privilege level of the user running nvdisasm. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvdisasm where a user may cause an out-of-bounds write by running nvdisasm on a malicious ELF file. A successful exploit of this vulnerability may lead to denial of service. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in cuobjdump where an attacker may cause a stack-based buffer overflow by getting the user to run cuobjdump on a malicious ELF file. A successful exploit of this vulnerability may lead to arbitrary code execution at the privilege level of the user running
cuobjdump. |
NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service. |
The Limit Bio WordPress plugin through 1.0 does not have CSRF check when updating its settings, and is missing sanitisation as well as escaping, which could allow attackers to make logged in admin add Stored XSS payloads via a CSRF attack. |
NVIDIA CUDA Toolkit contains a vulnerability in cuobjdump, where an unprivileged user can cause a NULL pointer dereference. A successful exploit of this vulnerability may lead to a limited denial of service. |
Improper Privilege Management vulnerability in OpenText NetIQ Access Manager allows user account impersonation in specific scenario. This issue affects NetIQ Access Manager before 5.0.4.1 and before 5.1 |
Improper Input Validation vulnerability in OpenText NetIQ Access Manager leads to Cross-Site Scripting (XSS) attack. This issue affects Access Manager before 5.0.4.1 and 5.1. |
A flaw was found in Red Hat Openshift AI Service. A low-privileged attacker with access to an authenticated account, for example as a data scientist using a standard Jupyter notebook, can escalate their privileges to a full cluster administrator. This allows for the complete compromise of the cluster's confidentiality, integrity, and availability. The attacker can steal sensitive data, disrupt all services, and take control of the underlying infrastructure, leading to a total breach of the platform and all applications hosted on it. |
NVIDIA Container Toolkit contains an improper isolation vulnerability where a specially crafted container image could lead to untrusted code running in the host’s network namespace. This vulnerability is present only when the NVIDIA Container Toolkit is configured in a nondefault way. A successful exploit of this vulnerability may lead to denial of service and escalation of privileges. |
NVIDIA Container Toolkit contains an improper isolation vulnerability where a specially crafted container image could lead to untrusted code obtaining read and write access to host devices. This vulnerability is present only when the NVIDIA Container Toolkit is configured in a nondefault way. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering. |