CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix shift out-of-bounds issue
[ 567.613292] shift exponent 255 is too large for 64-bit type 'long unsigned int'
[ 567.614498] CPU: 5 PID: 238 Comm: kworker/5:1 Tainted: G OE 6.2.0-34-generic #34~22.04.1-Ubuntu
[ 567.614502] Hardware name: AMD Splinter/Splinter-RPL, BIOS WS43927N_871 09/25/2023
[ 567.614504] Workqueue: events send_exception_work_handler [amdgpu]
[ 567.614748] Call Trace:
[ 567.614750] <TASK>
[ 567.614753] dump_stack_lvl+0x48/0x70
[ 567.614761] dump_stack+0x10/0x20
[ 567.614763] __ubsan_handle_shift_out_of_bounds+0x156/0x310
[ 567.614769] ? srso_alias_return_thunk+0x5/0x7f
[ 567.614773] ? update_sd_lb_stats.constprop.0+0xf2/0x3c0
[ 567.614780] svm_range_split_by_granularity.cold+0x2b/0x34 [amdgpu]
[ 567.615047] ? srso_alias_return_thunk+0x5/0x7f
[ 567.615052] svm_migrate_to_ram+0x185/0x4d0 [amdgpu]
[ 567.615286] do_swap_page+0x7b6/0xa30
[ 567.615291] ? srso_alias_return_thunk+0x5/0x7f
[ 567.615294] ? __free_pages+0x119/0x130
[ 567.615299] handle_pte_fault+0x227/0x280
[ 567.615303] __handle_mm_fault+0x3c0/0x720
[ 567.615311] handle_mm_fault+0x119/0x330
[ 567.615314] ? lock_mm_and_find_vma+0x44/0x250
[ 567.615318] do_user_addr_fault+0x1a9/0x640
[ 567.615323] exc_page_fault+0x81/0x1b0
[ 567.615328] asm_exc_page_fault+0x27/0x30
[ 567.615332] RIP: 0010:__get_user_8+0x1c/0x30 |
In the Linux kernel, the following vulnerability has been resolved:
fs/jfs: Add validity check for db_maxag and db_agpref
Both db_maxag and db_agpref are used as the index of the
db_agfree array, but there is currently no validity check for
db_maxag and db_agpref, which can lead to errors.
The following is related bug reported by Syzbot:
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:639:20
index 7936 is out of range for type 'atomic_t[128]'
Add checking that the values of db_maxag and db_agpref are valid
indexes for the db_agfree array. |
There's a vulnerability in podman where an attacker may use the kube play command to overwrite host files when the kube file container a Secrete or a ConfigMap volume mount and such volume contains a symbolic link to a host file path. In a successful attack, the attacker can only control the target file to be overwritten but not the content to be written into the file.
Binary-Affected: podman
Upstream-version-introduced: v4.0.0
Upstream-version-fixed: v5.6.1 |
Improper input validation for DIMM serial presence detect (SPD) metadata could allow an attacker with physical access, ring0 access on a system with a non-compliant DIMM, or control over the Root of Trust for BIOS update, to bypass SMM isolation potentially resulting in arbitrary code execution at the SMM level. |
Improper input validation in the GPU driver could allow an attacker to exploit a heap overflow potentially resulting in arbitrary code execution. |
Improper input validation in AMD Crash Defender could allow an attacker to provide the Windows® system process ID to a kernel-mode driver, resulting in an operating system crash, potentially leading to denial of service. |
Improper input validation in the system management mode (SMM) could allow a privileged attacker to overwrite arbitrary memory potentially resulting in arbitrary code execution at the SMM level. |
Improper input validation in the SMM handler may allow a privileged attacker to overwrite SMRAM, potentially leading to arbitrary code execution. |
Improper input validation in the SMM handler may allow a privileged attacker to overwrite SMRAM, potentially leading to arbitrary code execution. |
Improper input validation in the SMM handler may allow a privileged attacker to overwrite SMRAM, potentially leading to arbitrary code execution. |
In Shenzhen C-Data Technology Co. FD602GW-DX-R410 (firmware v2.2.14), the web management interface contains an authenticated CSRF vulnerability on the reboot endpoint (/boaform/admin/formReboot). An attacker can craft a malicious webpage that, when visited by an authenticated administrator, causes the router to reboot without explicit user consent. This lack of CSRF protection on a sensitive administrative function can lead to denial of service by disrupting network availability. |
The eHRD CTMS developed by Sunnet has an Arbitrary File Reading vulnerability, allowing remote attackers with administrator privileges to exploit Relative Path Traversal to download arbitrary system files. |
WebITR developed by Uniong has a Missing Authentication vulnerability, allowing unauthenticated remote attackers to log into the system as arbitrary users by exploiting a specific functionality. |
WebITR developed by Uniong has a SQL Injection vulnerability, allowing unauthenticated remote attackers to inject arbitrary SQL commands to read database contents. |
WebITR developed by Uniong has an Arbitrary File Reading vulnerability, allowing remote attackers with regular privileges to exploit Absolute Path Traversal to download arbitrary system files. |
WebITR developed by Uniong has an Arbitrary File Reading vulnerability, allowing remote attackers with regular privileges to exploit Absolute Path Traversal to download arbitrary system files. |
WebITR developed by Uniong has an Arbitrary File Reading vulnerability, allowing remote attackers with regular privileges to exploit Absolute Path Traversal to download arbitrary system files. |
WebITR developed by Uniong has an Arbitrary File Reading vulnerability, allowing remote attackers with regular privileges to exploit Absolute Path Traversal to download arbitrary system files. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc_submit: fix race around suspend_pending
Currently in some testcases we can trigger:
xe 0000:03:00.0: [drm] Assertion `exec_queue_destroyed(q)` failed!
....
WARNING: CPU: 18 PID: 2640 at drivers/gpu/drm/xe/xe_guc_submit.c:1826 xe_guc_sched_done_handler+0xa54/0xef0 [xe]
xe 0000:03:00.0: [drm] *ERROR* GT1: DEREGISTER_DONE: Unexpected engine state 0x00a1, guc_id=57
Looking at a snippet of corresponding ftrace for this GuC id we can see:
162.673311: xe_sched_msg_add: dev=0000:03:00.0, gt=1 guc_id=57, opcode=3
162.673317: xe_sched_msg_recv: dev=0000:03:00.0, gt=1 guc_id=57, opcode=3
162.673319: xe_exec_queue_scheduling_disable: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0x29, flags=0x0
162.674089: xe_exec_queue_kill: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0x29, flags=0x0
162.674108: xe_exec_queue_close: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0xa9, flags=0x0
162.674488: xe_exec_queue_scheduling_done: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0xa9, flags=0x0
162.678452: xe_exec_queue_deregister: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0xa1, flags=0x0
It looks like we try to suspend the queue (opcode=3), setting
suspend_pending and triggering a disable_scheduling. The user then
closes the queue. However the close will also forcefully signal the
suspend fence after killing the queue, later when the G2H response for
disable_scheduling comes back we have now cleared suspend_pending when
signalling the suspend fence, so the disable_scheduling now incorrectly
tries to also deregister the queue. This leads to warnings since the queue
has yet to even be marked for destruction. We also seem to trigger
errors later with trying to double unregister the same queue.
To fix this tweak the ordering when handling the response to ensure we
don't race with a disable_scheduling that didn't actually intend to
perform an unregister. The destruction path should now also correctly
wait for any pending_disable before marking as destroyed.
(cherry picked from commit f161809b362f027b6d72bd998e47f8f0bad60a2e) |
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in PenciDesign Penci Filter Everything allows DOM-Based XSS. This issue affects Penci Filter Everything: from n/a through n/a. |