CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A type confusion issue was addressed with improved checks. This issue is fixed in iOS 15.7.4 and iPadOS 15.7.4, iOS 16.3.1 and iPadOS 16.3.1, macOS Ventura 13.2.1, Safari 16.3. Processing maliciously crafted web content may lead to arbitrary code execution. Apple is aware of a report that this issue may have been actively exploited. |
An out-of-bounds write issue was addressed with improved input validation. This issue is fixed in macOS Monterey 12.6.5, iOS 16.4.1 and iPadOS 16.4.1, macOS Ventura 13.3.1, iOS 15.7.5 and iPadOS 15.7.5, macOS Big Sur 11.7.6. An app may be able to execute arbitrary code with kernel privileges. Apple is aware of a report that this issue may have been actively exploited. |
An out-of-bounds write issue was addressed with improved bounds checking. This issue is fixed in iOS 15.7.1 and iPadOS 15.7.1, iOS 16.1 and iPadOS 16. An application may be able to execute arbitrary code with kernel privileges. Apple is aware of a report that this issue may have been actively exploited.. |
A type confusion issue was addressed with improved state handling. This issue is fixed in Safari 16.2, tvOS 16.2, macOS Ventura 13.1, iOS 15.7.2 and iPadOS 15.7.2, iOS 16.1.2. Processing maliciously crafted web content may lead to arbitrary code execution. Apple is aware of a report that this issue may have been actively exploited against versions of iOS released before iOS 15.1.. |
An out-of-bounds write issue was addressed with improved bounds checking. This issue is fixed in iOS 15.6.1 and iPadOS 15.6.1, macOS Monterey 12.5.1, Safari 15.6.1. Processing maliciously crafted web content may lead to arbitrary code execution. Apple is aware of a report that this issue may have been actively exploited. |
Use After Free vulnerability in Arm Ltd Bifrost GPU Kernel Driver, Arm Ltd Valhall GPU Kernel Driver allows a local non-privileged user to make improper GPU memory processing operations to gain access to already freed memory.This issue affects Bifrost GPU Kernel Driver: from r34p0 through r40p0; Valhall GPU Kernel Driver: from r34p0 through r40p0. |
A local non-privileged user can make improper GPU memory processing operations to gain access to already freed memory.
|
A memory corruption issue was addressed with improved memory handling. This issue is fixed in macOS Big Sur 11.5.1, iOS 14.7.1 and iPadOS 14.7.1, watchOS 7.6.1. An application may be able to execute arbitrary code with kernel privileges. Apple is aware of a report that this issue may have been actively exploited. |
A type confusion issue was addressed with improved state handling. This issue is fixed in iOS 12.5.5, iOS 14.4 and iPadOS 14.4, macOS Big Sur 11.2, Security Update 2021-001 Catalina, Security Update 2021-001 Mojave, Security Update 2021-006 Catalina. A malicious application may be able to execute arbitrary code with kernel privileges. Apple is aware of reports that an exploit for this issue exists in the wild. |
A memory corruption issue was addressed with improved memory handling. This issue is fixed in iOS 15.0.2 and iPadOS 15.0.2, macOS Monterey 12.0.1, iOS 14.8.1 and iPadOS 14.8.1, tvOS 15.1, watchOS 8.1, macOS Big Sur 11.6.1. An application may be able to execute arbitrary code with kernel privileges. Apple is aware of a report that this issue may have been actively exploited.. |
An out-of-bounds write issue was addressed with improved bounds checking. This issue is fixed in iOS 14.8.1 and iPadOS 14.8.1, iOS 15.1 and iPadOS 15.1. A malicious application may be able to execute arbitrary code with kernel privileges. |
A buffer overflow issue was addressed with improved memory handling. This issue is fixed in iOS 15.2 and iPadOS 15.2. An application may be able to execute arbitrary code with kernel privileges. |
A deserialization issue was addressed through improved validation. This issue is fixed in Security Update 2021-005 Catalina, iOS 12.5.5, iOS 14.8 and iPadOS 14.8, macOS Big Sur 11.6, watchOS 7.6.2. A sandboxed process may be able to circumvent sandbox restrictions. Apple was aware of a report that this issue may have been actively exploited at the time of release.. |
A race condition was addressed with improved locking. This issue is fixed in macOS Big Sur 11.2, Security Update 2021-001 Catalina, Security Update 2021-001 Mojave, watchOS 7.3, tvOS 14.4, iOS 14.4 and iPadOS 14.4. A malicious application may be able to elevate privileges. Apple is aware of a report that this issue may have been actively exploited.. |
A type confusion issue was addressed with improved state handling. This issue is fixed in macOS Big Sur 11.2, Security Update 2021-001 Catalina, Security Update 2021-001 Mojave, tvOS 14.4, watchOS 7.3, iOS 14.4 and iPadOS 14.4, Safari 14.0.3. Processing maliciously crafted web content may lead to arbitrary code execution. |
A logic issue was addressed with improved restrictions. This issue is fixed in macOS Big Sur 11.2, Security Update 2021-001 Catalina, Security Update 2021-001 Mojave, iOS 14.4 and iPadOS 14.4. A remote attacker may be able to cause arbitrary code execution. Apple is aware of a report that this issue may have been actively exploited.. |
A logic issue was addressed with improved restrictions. This issue is fixed in macOS Big Sur 11.2, Security Update 2021-001 Catalina, Security Update 2021-001 Mojave, iOS 14.4 and iPadOS 14.4. A remote attacker may be able to cause arbitrary code execution. Apple is aware of a report that this issue may have been actively exploited.. |
This issue was addressed by improved management of object lifetimes. This issue is fixed in iOS 12.5.2, iOS 14.4.2 and iPadOS 14.4.2, watchOS 7.3.3. Processing maliciously crafted web content may lead to universal cross site scripting. Apple is aware of a report that this issue may have been actively exploited.. |
An out-of-bounds write issue was addressed with improved bounds checking. This issue is fixed in iOS 13.5 and iPadOS 13.5, iOS 12.4.7, watchOS 6.2.5. Processing a maliciously crafted mail message may lead to unexpected memory modification or application termination. |
In the Linux kernel, the following vulnerability has been resolved:
udp: Deal with race between UDP socket address change and rehash
If a UDP socket changes its local address while it's receiving
datagrams, as a result of connect(), there is a period during which
a lookup operation might fail to find it, after the address is changed
but before the secondary hash (port and address) and the four-tuple
hash (local and remote ports and addresses) are updated.
Secondary hash chains were introduced by commit 30fff9231fad ("udp:
bind() optimisation") and, as a result, a rehash operation became
needed to make a bound socket reachable again after a connect().
This operation was introduced by commit 719f835853a9 ("udp: add
rehash on connect()") which isn't however a complete fix: the
socket will be found once the rehashing completes, but not while
it's pending.
This is noticeable with a socat(1) server in UDP4-LISTEN mode, and a
client sending datagrams to it. After the server receives the first
datagram (cf. _xioopen_ipdgram_listen()), it issues a connect() to
the address of the sender, in order to set up a directed flow.
Now, if the client, running on a different CPU thread, happens to
send a (subsequent) datagram while the server's socket changes its
address, but is not rehashed yet, this will result in a failed
lookup and a port unreachable error delivered to the client, as
apparent from the following reproducer:
LEN=$(($(cat /proc/sys/net/core/wmem_default) / 4))
dd if=/dev/urandom bs=1 count=${LEN} of=tmp.in
while :; do
taskset -c 1 socat UDP4-LISTEN:1337,null-eof OPEN:tmp.out,create,trunc &
sleep 0.1 || sleep 1
taskset -c 2 socat OPEN:tmp.in UDP4:localhost:1337,shut-null
wait
done
where the client will eventually get ECONNREFUSED on a write()
(typically the second or third one of a given iteration):
2024/11/13 21:28:23 socat[46901] E write(6, 0x556db2e3c000, 8192): Connection refused
This issue was first observed as a seldom failure in Podman's tests
checking UDP functionality while using pasta(1) to connect the
container's network namespace, which leads us to a reproducer with
the lookup error resulting in an ICMP packet on a tap device:
LOCAL_ADDR="$(ip -j -4 addr show|jq -rM '.[] | .addr_info[0] | select(.scope == "global").local')"
while :; do
./pasta --config-net -p pasta.pcap -u 1337 socat UDP4-LISTEN:1337,null-eof OPEN:tmp.out,create,trunc &
sleep 0.2 || sleep 1
socat OPEN:tmp.in UDP4:${LOCAL_ADDR}:1337,shut-null
wait
cmp tmp.in tmp.out
done
Once this fails:
tmp.in tmp.out differ: char 8193, line 29
we can finally have a look at what's going on:
$ tshark -r pasta.pcap
1 0.000000 :: ? ff02::16 ICMPv6 110 Multicast Listener Report Message v2
2 0.168690 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
3 0.168767 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
4 0.168806 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
5 0.168827 c6:47:05:8d:dc:04 ? Broadcast ARP 42 Who has 88.198.0.161? Tell 88.198.0.164
6 0.168851 9a:55:9a:55:9a:55 ? c6:47:05:8d:dc:04 ARP 42 88.198.0.161 is at 9a:55:9a:55:9a:55
7 0.168875 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
8 0.168896 88.198.0.164 ? 88.198.0.161 ICMP 590 Destination unreachable (Port unreachable)
9 0.168926 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
10 0.168959 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
11 0.168989 88.198.0.161 ? 88.198.0.164 UDP 4138 60260 ? 1337 Len=4096
12 0.169010 88.198.0.161 ? 88.198.0.164 UDP 42 60260 ? 1337 Len=0
On the third datagram received, the network namespace of the container
initiates an ARP lookup to deliver the ICMP message.
In another variant of this reproducer, starting the client with:
strace -f pasta --config-net -u 1337 socat UDP4-LISTEN:1337,null-eof OPEN:tmp.out,create,tru
---truncated--- |