Search Results (5795 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-49546 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/kexec: fix memory leak of elf header buffer This is reported by kmemleak detector: unreferenced object 0xffffc900002a9000 (size 4096): comm "kexec", pid 14950, jiffies 4295110793 (age 373.951s) hex dump (first 32 bytes): 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 .ELF............ 04 00 3e 00 01 00 00 00 00 00 00 00 00 00 00 00 ..>............. backtrace: [<0000000016a8ef9f>] __vmalloc_node_range+0x101/0x170 [<000000002b66b6c0>] __vmalloc_node+0xb4/0x160 [<00000000ad40107d>] crash_prepare_elf64_headers+0x8e/0xcd0 [<0000000019afff23>] crash_load_segments+0x260/0x470 [<0000000019ebe95c>] bzImage64_load+0x814/0xad0 [<0000000093e16b05>] arch_kexec_kernel_image_load+0x1be/0x2a0 [<000000009ef2fc88>] kimage_file_alloc_init+0x2ec/0x5a0 [<0000000038f5a97a>] __do_sys_kexec_file_load+0x28d/0x530 [<0000000087c19992>] do_syscall_64+0x3b/0x90 [<0000000066e063a4>] entry_SYSCALL_64_after_hwframe+0x44/0xae In crash_prepare_elf64_headers(), a buffer is allocated via vmalloc() to store elf headers. While it's not freed back to system correctly when kdump kernel is reloaded or unloaded. Then memory leak is caused. Fix it by introducing x86 specific function arch_kimage_file_post_load_cleanup(), and freeing the buffer there. And also remove the incorrect elf header buffer freeing code. Before calling arch specific kexec_file loading function, the image instance has been initialized. So 'image->elf_headers' must be NULL. It doesn't make sense to free the elf header buffer in the place. Three different people have reported three bugs about the memory leak on x86_64 inside Redhat.
CVE-2022-49534 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Protect memory leak for NPIV ports sending PLOGI_RJT There is a potential memory leak in lpfc_ignore_els_cmpl() and lpfc_els_rsp_reject() that was allocated from NPIV PLOGI_RJT (lpfc_rcv_plogi()'s login_mbox). Check if cmdiocb->context_un.mbox was allocated in lpfc_ignore_els_cmpl(), and then free it back to phba->mbox_mem_pool along with mbox->ctx_buf for service parameters. For lpfc_els_rsp_reject() failure, free both the ctx_buf for service parameters and the login_mbox.
CVE-2022-49521 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix resource leak in lpfc_sli4_send_seq_to_ulp() If no handler is found in lpfc_complete_unsol_iocb() to match the rctl of a received frame, the frame is dropped and resources are leaked. Fix by returning resources when discarding an unhandled frame type. Update lpfc_fc_frame_check() handling of NOP basic link service.
CVE-2022-49457 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: versatile: Add missing of_node_put in dcscb_init The device_node pointer is returned by of_find_compatible_node with refcount incremented. We should use of_node_put() to avoid the refcount leak.
CVE-2022-49447 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: hisi: Add missing of_node_put after of_find_compatible_node of_find_compatible_node will increment the refcount of the returned device_node. Calling of_node_put() to avoid the refcount leak
CVE-2022-49432 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/xics: fix refcount leak in icp_opal_init() The of_find_compatible_node() function returns a node pointer with refcount incremented, use of_node_put() on it when done.
CVE-2022-49431 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/iommu: Add missing of_node_put in iommu_init_early_dart The device_node pointer is returned by of_find_compatible_node with refcount incremented. We should use of_node_put() to avoid the refcount leak.
CVE-2022-49324 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mips: cpc: Fix refcount leak in mips_cpc_default_phys_base Add the missing of_node_put() to release the refcount incremented by of_find_compatible_node().
CVE-2022-49314 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tty: Fix a possible resource leak in icom_probe When pci_read_config_dword failed, call pci_release_regions() and pci_disable_device() to recycle the resource previously allocated.
CVE-2022-49312 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8712: fix a potential memory leak in r871xu_drv_init() In r871xu_drv_init(), if r8712_init_drv_sw() fails, then the memory allocated by r8712_alloc_io_queue() in r8712_usb_dvobj_init() is not properly released as there is no action will be performed by r8712_usb_dvobj_deinit(). To properly release it, we should call r8712_free_io_queue() in r8712_usb_dvobj_deinit(). Besides, in r871xu_dev_remove(), r8712_usb_dvobj_deinit() will be called by r871x_dev_unload() under condition `padapter->bup` and r8712_free_io_queue() is called by r8712_free_drv_sw(). However, r8712_usb_dvobj_deinit() does not rely on `padapter->bup` and calling r8712_free_io_queue() in r8712_free_drv_sw() is negative for better understading the code. So I move r8712_usb_dvobj_deinit() into r871xu_dev_remove(), and remove r8712_free_io_queue() from r8712_free_drv_sw().
CVE-2022-49178 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: memstick/mspro_block: fix handling of read-only devices Use set_disk_ro to propagate the read-only state to the block layer instead of checking for it in ->open and leaking a reference in case of a read-only device.
CVE-2022-49121 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: pm8001: Fix tag leaks on error In pm8001_chip_set_dev_state_req(), pm8001_chip_fw_flash_update_req(), pm80xx_chip_phy_ctl_req() and pm8001_chip_reg_dev_req() add missing calls to pm8001_tag_free() to free the allocated tag when pm8001_mpi_build_cmd() fails. Similarly, in pm8001_exec_internal_task_abort(), if the chip ->task_abort method fails, the tag allocated for the abort request task must be freed. Add the missing call to pm8001_tag_free().
CVE-2022-49120 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: pm8001: Fix task leak in pm8001_send_abort_all() In pm8001_send_abort_all(), make sure to free the allocated sas task if pm8001_tag_alloc() or pm8001_mpi_build_cmd() fail.
CVE-2022-49119 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: pm8001: Fix memory leak in pm8001_chip_fw_flash_update_req() In pm8001_chip_fw_flash_update_build(), if pm8001_chip_fw_flash_update_build() fails, the struct fw_control_ex allocated must be freed.
CVE-2022-49117 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mips: ralink: fix a refcount leak in ill_acc_of_setup() of_node_put(np) needs to be called when pdev == NULL.
CVE-2022-49103 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: NFSv4.2: fix reference count leaks in _nfs42_proc_copy_notify() [You don't often get email from xiongx18@fudan.edu.cn. Learn why this is important at http://aka.ms/LearnAboutSenderIdentification.] The reference counting issue happens in two error paths in the function _nfs42_proc_copy_notify(). In both error paths, the function simply returns the error code and forgets to balance the refcount of object `ctx`, bumped by get_nfs_open_context() earlier, which may cause refcount leaks. Fix it by balancing refcount of the `ctx` object before the function returns in both error paths.
CVE-2022-48794 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: ieee802154: at86rf230: Stop leaking skb's Upon error the ieee802154_xmit_complete() helper is not called. Only ieee802154_wake_queue() is called manually. In the Tx case we then leak the skb structure. Free the skb structure upon error before returning when appropriate. As the 'is_tx = 0' cannot be moved in the complete handler because of a possible race between the delay in switching to STATE_RX_AACK_ON and a new interrupt, we introduce an intermediate 'was_tx' boolean just for this purpose. There is no Fixes tag applying here, many changes have been made on this area and the issue kind of always existed.
CVE-2022-48763 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Forcibly leave nested virt when SMM state is toggled Forcibly leave nested virtualization operation if userspace toggles SMM state via KVM_SET_VCPU_EVENTS or KVM_SYNC_X86_EVENTS. If userspace forces the vCPU out of SMM while it's post-VMXON and then injects an SMI, vmx_enter_smm() will overwrite vmx->nested.smm.vmxon and end up with both vmxon=false and smm.vmxon=false, but all other nVMX state allocated. Don't attempt to gracefully handle the transition as (a) most transitions are nonsencial, e.g. forcing SMM while L2 is running, (b) there isn't sufficient information to handle all transitions, e.g. SVM wants access to the SMRAM save state, and (c) KVM_SET_VCPU_EVENTS must precede KVM_SET_NESTED_STATE during state restore as the latter disallows putting the vCPU into L2 if SMM is active, and disallows tagging the vCPU as being post-VMXON in SMM if SMM is not active. Abuse of KVM_SET_VCPU_EVENTS manifests as a WARN and memory leak in nVMX due to failure to free vmcs01's shadow VMCS, but the bug goes far beyond just a memory leak, e.g. toggling SMM on while L2 is active puts the vCPU in an architecturally impossible state. WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline] WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656 Modules linked in: CPU: 1 PID: 3606 Comm: syz-executor725 Not tainted 5.17.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline] RIP: 0010:free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656 Code: <0f> 0b eb b3 e8 8f 4d 9f 00 e9 f7 fe ff ff 48 89 df e8 92 4d 9f 00 Call Trace: <TASK> kvm_arch_vcpu_destroy+0x72/0x2f0 arch/x86/kvm/x86.c:11123 kvm_vcpu_destroy arch/x86/kvm/../../../virt/kvm/kvm_main.c:441 [inline] kvm_destroy_vcpus+0x11f/0x290 arch/x86/kvm/../../../virt/kvm/kvm_main.c:460 kvm_free_vcpus arch/x86/kvm/x86.c:11564 [inline] kvm_arch_destroy_vm+0x2e8/0x470 arch/x86/kvm/x86.c:11676 kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1217 [inline] kvm_put_kvm+0x4fa/0xb00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1250 kvm_vm_release+0x3f/0x50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1273 __fput+0x286/0x9f0 fs/file_table.c:311 task_work_run+0xdd/0x1a0 kernel/task_work.c:164 exit_task_work include/linux/task_work.h:32 [inline] do_exit+0xb29/0x2a30 kernel/exit.c:806 do_group_exit+0xd2/0x2f0 kernel/exit.c:935 get_signal+0x4b0/0x28c0 kernel/signal.c:2862 arch_do_signal_or_restart+0x2a9/0x1c40 arch/x86/kernel/signal.c:868 handle_signal_work kernel/entry/common.c:148 [inline] exit_to_user_mode_loop kernel/entry/common.c:172 [inline] exit_to_user_mode_prepare+0x17d/0x290 kernel/entry/common.c:207 __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline] syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300 do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x44/0xae </TASK>
CVE-2022-48706 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vdpa: ifcvf: Do proper cleanup if IFCVF init fails ifcvf_mgmt_dev leaks memory if it is not freed before returning. Call is made to correct return statement so memory does not leak. ifcvf_init_hw does not take care of this so it is needed to do it here.
CVE-2025-65637 2 Logrus Project, Turbopuffer 2 Logrus, Logrus 2025-12-23 7.5 High
A denial-of-service vulnerability exists in github.com/sirupsen/logrus when using Entry.Writer() to log a single-line payload larger than 64KB without newline characters. Due to limitations in the internal bufio.Scanner, the read fails with "token too long" and the writer pipe is closed, leaving Writer() unusable and causing application unavailability (DoS). This affects versions < 1.8.3, 1.9.0, and 1.9.2. The issue is fixed in 1.8.3, 1.9.1, and 1.9.3+, where the input is chunked and the writer continues to function even if an error is logged.