| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Improper action enforcement in certain Zoom Workplace Clients for Windows may allow an unauthenticated user to conduct a disclosure of information via network access. |
| The Matrix specification before 1.16 (i.e., with a room version before 12) lacks create event uniqueness. |
| MongoDB Server's mongos component can become unresponsive to new connections due to incorrect handling of incomplete data. This affects MongoDB when configured with load balancer support. This issue affects MongoDB Server v6.0 prior to 6.0.23, MongoDB Server v7.0 prior to 7.0.20 and MongoDB Server v8.0 prior to 8.0.9
Required Configuration:
This affects MongoDB sharded clusters when configured with load balancer support for mongos using HAProxy on specified ports. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Only use reserved BCS instances for usm migrate exec queue
The GuC context scheduling queue is 2 entires deep, thus it is possible
for a migration job to be stuck behind a fault if migration exec queue
shares engines with user jobs. This can deadlock as the migrate exec
queue is required to service page faults. Avoid deadlock by only using
reserved BCS instances for usm migrate exec queue.
(cherry picked from commit 04f4a70a183a688a60fe3882d6e4236ea02cfc67) |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: Avoid overwriting the copies of clcsock callback functions
The callback functions of clcsock will be saved and replaced during
the fallback. But if the fallback happens more than once, then the
copies of these callback functions will be overwritten incorrectly,
resulting in a loop call issue:
clcsk->sk_error_report
|- smc_fback_error_report() <------------------------------|
|- smc_fback_forward_wakeup() | (loop)
|- clcsock_callback() (incorrectly overwritten) |
|- smc->clcsk_error_report() ------------------|
So this patch fixes the issue by saving these function pointers only
once in the fallback and avoiding overwriting. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: Fix crash when a namespace is disabled
The namespace percpu counter protects pending I/O, and we can
only safely diable the namespace once the counter drop to zero.
Otherwise we end up with a crash when running blktests/nvme/058
(eg for loop transport):
[ 2352.930426] [ T53909] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000005: 0000 [#1] PREEMPT SMP KASAN PTI
[ 2352.930431] [ T53909] KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f]
[ 2352.930434] [ T53909] CPU: 3 UID: 0 PID: 53909 Comm: kworker/u16:5 Tainted: G W 6.13.0-rc6 #232
[ 2352.930438] [ T53909] Tainted: [W]=WARN
[ 2352.930440] [ T53909] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
[ 2352.930443] [ T53909] Workqueue: nvmet-wq nvme_loop_execute_work [nvme_loop]
[ 2352.930449] [ T53909] RIP: 0010:blkcg_set_ioprio+0x44/0x180
as the queue is already torn down when calling submit_bio();
So we need to init the percpu counter in nvmet_ns_enable(), and
wait for it to drop to zero in nvmet_ns_disable() to avoid having
I/O pending after the namespace has been disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
rhashtable: Fix potential deadlock by moving schedule_work outside lock
Move the hash table growth check and work scheduling outside the
rht lock to prevent a possible circular locking dependency.
The original implementation could trigger a lockdep warning due to
a potential deadlock scenario involving nested locks between
rhashtable bucket, rq lock, and dsq lock. By relocating the
growth check and work scheduling after releasing the rth lock, we break
this potential deadlock chain.
This change expands the flexibility of rhashtable by removing
restrictive locking that previously limited its use in scheduler
and workqueue contexts.
Import to say that this calls rht_grow_above_75(), which reads from
struct rhashtable without holding the lock, if this is a problem, we can
move the check to the lock, and schedule the workqueue after the lock.
Modified so that atomic_inc is also moved outside of the bucket
lock along with the growth above 75% check. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: avoid infinite loop to flush node pages
xfstests/generic/475 can give EIO all the time which give an infinite loop
to flush node page like below. Let's avoid it.
[16418.518551] Call Trace:
[16418.518553] ? dm_submit_bio+0x48/0x400
[16418.518574] ? submit_bio_checks+0x1ac/0x5a0
[16418.525207] __submit_bio+0x1a9/0x230
[16418.525210] ? kmem_cache_alloc+0x29e/0x3c0
[16418.525223] submit_bio_noacct+0xa8/0x2b0
[16418.525226] submit_bio+0x4d/0x130
[16418.525238] __submit_bio+0x49/0x310 [f2fs]
[16418.525339] ? bio_add_page+0x6a/0x90
[16418.525344] f2fs_submit_page_bio+0x134/0x1f0 [f2fs]
[16418.525365] read_node_page+0x125/0x1b0 [f2fs]
[16418.525388] __get_node_page.part.0+0x58/0x3f0 [f2fs]
[16418.525409] __get_node_page+0x2f/0x60 [f2fs]
[16418.525431] f2fs_get_dnode_of_data+0x423/0x860 [f2fs]
[16418.525452] ? asm_sysvec_apic_timer_interrupt+0x12/0x20
[16418.525458] ? __mod_memcg_state.part.0+0x2a/0x30
[16418.525465] ? __mod_memcg_lruvec_state+0x27/0x40
[16418.525467] ? __xa_set_mark+0x57/0x70
[16418.525472] f2fs_do_write_data_page+0x10e/0x7b0 [f2fs]
[16418.525493] f2fs_write_single_data_page+0x555/0x830 [f2fs]
[16418.525514] ? sysvec_apic_timer_interrupt+0x4e/0x90
[16418.525518] ? asm_sysvec_apic_timer_interrupt+0x12/0x20
[16418.525523] f2fs_write_cache_pages+0x303/0x880 [f2fs]
[16418.525545] ? blk_flush_plug_list+0x47/0x100
[16418.525548] f2fs_write_data_pages+0xfd/0x320 [f2fs]
[16418.525569] do_writepages+0xd5/0x210
[16418.525648] filemap_fdatawrite_wbc+0x7d/0xc0
[16418.525655] filemap_fdatawrite+0x50/0x70
[16418.525658] f2fs_sync_dirty_inodes+0xa4/0x230 [f2fs]
[16418.525679] f2fs_write_checkpoint+0x16d/0x1720 [f2fs]
[16418.525699] ? ttwu_do_wakeup+0x1c/0x160
[16418.525709] ? ttwu_do_activate+0x6d/0xd0
[16418.525711] ? __wait_for_common+0x11d/0x150
[16418.525715] kill_f2fs_super+0xca/0x100 [f2fs]
[16418.525733] deactivate_locked_super+0x3b/0xb0
[16418.525739] deactivate_super+0x40/0x50
[16418.525741] cleanup_mnt+0x139/0x190
[16418.525747] __cleanup_mnt+0x12/0x20
[16418.525749] task_work_run+0x6d/0xa0
[16418.525765] exit_to_user_mode_prepare+0x1ad/0x1b0
[16418.525771] syscall_exit_to_user_mode+0x27/0x50
[16418.525774] do_syscall_64+0x48/0xc0
[16418.525776] entry_SYSCALL_64_after_hwframe+0x44/0xae |
| E3 Site Supervisor Control (firmware version < 2.31F01) application services (MGW and RCI) uses client side hashing for authentication. An attacker can authenticate by obtaining only the password hash. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Fix ib block iterator counter overflow
When registering a new DMA MR after selecting the best aligned page size
for it, we iterate over the given sglist to split each entry to smaller,
aligned to the selected page size, DMA blocks.
In given circumstances where the sg entry and page size fit certain
sizes and the sg entry is not aligned to the selected page size, the
total size of the aligned pages we need to cover the sg entry is >= 4GB.
Under this circumstances, while iterating page aligned blocks, the
counter responsible for counting how much we advanced from the start of
the sg entry is overflowed because its type is u32 and we pass 4GB in
size. This can lead to an infinite loop inside the iterator function
because the overflow prevents the counter to be larger
than the size of the sg entry.
Fix the presented problem by changing the advancement condition to
eliminate overflow.
Backtrace:
[ 192.374329] efa_reg_user_mr_dmabuf
[ 192.376783] efa_register_mr
[ 192.382579] pgsz_bitmap 0xfffff000 rounddown 0x80000000
[ 192.386423] pg_sz [0x80000000] umem_length[0xc0000000]
[ 192.392657] start 0x0 length 0xc0000000 params.page_shift 31 params.page_num 3
[ 192.399559] hp_cnt[3], pages_in_hp[524288]
[ 192.403690] umem->sgt_append.sgt.nents[1]
[ 192.407905] number entries: [1], pg_bit: [31]
[ 192.411397] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8]
[ 192.415601] biter->__sg_advance [665837568] sg_dma_len[3221225472]
[ 192.419823] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8]
[ 192.423976] biter->__sg_advance [2813321216] sg_dma_len[3221225472]
[ 192.428243] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8]
[ 192.432397] biter->__sg_advance [665837568] sg_dma_len[3221225472] |
| In the Linux kernel, the following vulnerability has been resolved:
net: enetc: avoid deadlock in enetc_tx_onestep_tstamp()
This lockdep splat says it better than I could:
================================
WARNING: inconsistent lock state
6.2.0-rc2-07010-ga9b9500ffaac-dirty #967 Not tainted
--------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
kworker/1:3/179 [HC0[0]:SC0[0]:HE1:SE1] takes:
ffff3ec4036ce098 (_xmit_ETHER#2){+.?.}-{3:3}, at: netif_freeze_queues+0x5c/0xc0
{IN-SOFTIRQ-W} state was registered at:
_raw_spin_lock+0x5c/0xc0
sch_direct_xmit+0x148/0x37c
__dev_queue_xmit+0x528/0x111c
ip6_finish_output2+0x5ec/0xb7c
ip6_finish_output+0x240/0x3f0
ip6_output+0x78/0x360
ndisc_send_skb+0x33c/0x85c
ndisc_send_rs+0x54/0x12c
addrconf_rs_timer+0x154/0x260
call_timer_fn+0xb8/0x3a0
__run_timers.part.0+0x214/0x26c
run_timer_softirq+0x3c/0x74
__do_softirq+0x14c/0x5d8
____do_softirq+0x10/0x20
call_on_irq_stack+0x2c/0x5c
do_softirq_own_stack+0x1c/0x30
__irq_exit_rcu+0x168/0x1a0
irq_exit_rcu+0x10/0x40
el1_interrupt+0x38/0x64
irq event stamp: 7825
hardirqs last enabled at (7825): [<ffffdf1f7200cae4>] exit_to_kernel_mode+0x34/0x130
hardirqs last disabled at (7823): [<ffffdf1f708105f0>] __do_softirq+0x550/0x5d8
softirqs last enabled at (7824): [<ffffdf1f7081050c>] __do_softirq+0x46c/0x5d8
softirqs last disabled at (7811): [<ffffdf1f708166e0>] ____do_softirq+0x10/0x20
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(_xmit_ETHER#2);
<Interrupt>
lock(_xmit_ETHER#2);
*** DEADLOCK ***
3 locks held by kworker/1:3/179:
#0: ffff3ec400004748 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0
#1: ffff80000a0bbdc8 ((work_completion)(&priv->tx_onestep_tstamp)){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0
#2: ffff3ec4036cd438 (&dev->tx_global_lock){+.+.}-{3:3}, at: netif_tx_lock+0x1c/0x34
Workqueue: events enetc_tx_onestep_tstamp
Call trace:
print_usage_bug.part.0+0x208/0x22c
mark_lock+0x7f0/0x8b0
__lock_acquire+0x7c4/0x1ce0
lock_acquire.part.0+0xe0/0x220
lock_acquire+0x68/0x84
_raw_spin_lock+0x5c/0xc0
netif_freeze_queues+0x5c/0xc0
netif_tx_lock+0x24/0x34
enetc_tx_onestep_tstamp+0x20/0x100
process_one_work+0x28c/0x6c0
worker_thread+0x74/0x450
kthread+0x118/0x11c
but I'll say it anyway: the enetc_tx_onestep_tstamp() work item runs in
process context, therefore with softirqs enabled (i.o.w., it can be
interrupted by a softirq). If we hold the netif_tx_lock() when there is
an interrupt, and the NET_TX softirq then gets scheduled, this will take
the netif_tx_lock() a second time and deadlock the kernel.
To solve this, use netif_tx_lock_bh(), which blocks softirqs from
running. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: timer: Don't take register_mutex with copy_from/to_user()
The infamous mmap_lock taken in copy_from/to_user() can be often
problematic when it's called inside another mutex, as they might lead
to deadlocks.
In the case of ALSA timer code, the bad pattern is with
guard(mutex)(®ister_mutex) that covers copy_from/to_user() -- which
was mistakenly introduced at converting to guard(), and it had been
carefully worked around in the past.
This patch fixes those pieces simply by moving copy_from/to_user() out
of the register mutex lock again. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix RCU stall while reaping monitor destination ring
While processing the monitor destination ring, MSDUs are reaped from the
link descriptor based on the corresponding buf_id.
However, sometimes the driver cannot obtain a valid buffer corresponding
to the buf_id received from the hardware. This causes an infinite loop
in the destination processing, resulting in a kernel crash.
kernel log:
ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309
ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed
ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309
ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed
Fix this by skipping the problematic buf_id and reaping the next entry,
replacing the break with the next MSDU processing.
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30
Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
| A vulnerability was found in HobbesOSR Kitten up to c4f8b7c3158983d1020af432be1b417b28686736 and classified as critical. Affected by this issue is the function set_pte_at in the library /include/arch-arm64/pgtable.h. The manipulation leads to resource consumption. Continious delivery with rolling releases is used by this product. Therefore, no version details of affected nor updated releases are available. |
| OMERO.web provides a web based client and plugin infrastructure. There is currently no escaping or validation of the `callback` parameter that can be passed to various OMERO.web endpoints that have JSONP enabled. This vulnerability has been patched in version 5.26.0.
|
| In the Linux kernel, the following vulnerability has been resolved:
dm-raid: Fix WARN_ON_ONCE check for sync_thread in raid_resume
rm-raid devices will occasionally trigger the following warning when
being resumed after a table load because DM_RECOVERY_RUNNING is set:
WARNING: CPU: 7 PID: 5660 at drivers/md/dm-raid.c:4105 raid_resume+0xee/0x100 [dm_raid]
The failing check is:
WARN_ON_ONCE(test_bit(MD_RECOVERY_RUNNING, &mddev->recovery));
This check is designed to make sure that the sync thread isn't
registered, but md_check_recovery can set MD_RECOVERY_RUNNING without
the sync_thread ever getting registered. Instead of checking if
MD_RECOVERY_RUNNING is set, check if sync_thread is non-NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix hang during unmount when stopping a space reclaim worker
Often when running generic/562 from fstests we can hang during unmount,
resulting in a trace like this:
Sep 07 11:52:00 debian9 unknown: run fstests generic/562 at 2022-09-07 11:52:00
Sep 07 11:55:32 debian9 kernel: INFO: task umount:49438 blocked for more than 120 seconds.
Sep 07 11:55:32 debian9 kernel: Not tainted 6.0.0-rc2-btrfs-next-122 #1
Sep 07 11:55:32 debian9 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Sep 07 11:55:32 debian9 kernel: task:umount state:D stack: 0 pid:49438 ppid: 25683 flags:0x00004000
Sep 07 11:55:32 debian9 kernel: Call Trace:
Sep 07 11:55:32 debian9 kernel: <TASK>
Sep 07 11:55:32 debian9 kernel: __schedule+0x3c8/0xec0
Sep 07 11:55:32 debian9 kernel: ? rcu_read_lock_sched_held+0x12/0x70
Sep 07 11:55:32 debian9 kernel: schedule+0x5d/0xf0
Sep 07 11:55:32 debian9 kernel: schedule_timeout+0xf1/0x130
Sep 07 11:55:32 debian9 kernel: ? lock_release+0x224/0x4a0
Sep 07 11:55:32 debian9 kernel: ? lock_acquired+0x1a0/0x420
Sep 07 11:55:32 debian9 kernel: ? trace_hardirqs_on+0x2c/0xd0
Sep 07 11:55:32 debian9 kernel: __wait_for_common+0xac/0x200
Sep 07 11:55:32 debian9 kernel: ? usleep_range_state+0xb0/0xb0
Sep 07 11:55:32 debian9 kernel: __flush_work+0x26d/0x530
Sep 07 11:55:32 debian9 kernel: ? flush_workqueue_prep_pwqs+0x140/0x140
Sep 07 11:55:32 debian9 kernel: ? trace_clock_local+0xc/0x30
Sep 07 11:55:32 debian9 kernel: __cancel_work_timer+0x11f/0x1b0
Sep 07 11:55:32 debian9 kernel: ? close_ctree+0x12b/0x5b3 [btrfs]
Sep 07 11:55:32 debian9 kernel: ? __trace_bputs+0x10b/0x170
Sep 07 11:55:32 debian9 kernel: close_ctree+0x152/0x5b3 [btrfs]
Sep 07 11:55:32 debian9 kernel: ? evict_inodes+0x166/0x1c0
Sep 07 11:55:32 debian9 kernel: generic_shutdown_super+0x71/0x120
Sep 07 11:55:32 debian9 kernel: kill_anon_super+0x14/0x30
Sep 07 11:55:32 debian9 kernel: btrfs_kill_super+0x12/0x20 [btrfs]
Sep 07 11:55:32 debian9 kernel: deactivate_locked_super+0x2e/0xa0
Sep 07 11:55:32 debian9 kernel: cleanup_mnt+0x100/0x160
Sep 07 11:55:32 debian9 kernel: task_work_run+0x59/0xa0
Sep 07 11:55:32 debian9 kernel: exit_to_user_mode_prepare+0x1a6/0x1b0
Sep 07 11:55:32 debian9 kernel: syscall_exit_to_user_mode+0x16/0x40
Sep 07 11:55:32 debian9 kernel: do_syscall_64+0x48/0x90
Sep 07 11:55:32 debian9 kernel: entry_SYSCALL_64_after_hwframe+0x63/0xcd
Sep 07 11:55:32 debian9 kernel: RIP: 0033:0x7fcde59a57a7
Sep 07 11:55:32 debian9 kernel: RSP: 002b:00007ffe914217c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
Sep 07 11:55:32 debian9 kernel: RAX: 0000000000000000 RBX: 00007fcde5ae8264 RCX: 00007fcde59a57a7
Sep 07 11:55:32 debian9 kernel: RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000055b57556cdd0
Sep 07 11:55:32 debian9 kernel: RBP: 000055b57556cba0 R08: 0000000000000000 R09: 00007ffe91420570
Sep 07 11:55:32 debian9 kernel: R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
Sep 07 11:55:32 debian9 kernel: R13: 000055b57556cdd0 R14: 000055b57556ccb8 R15: 0000000000000000
Sep 07 11:55:32 debian9 kernel: </TASK>
What happens is the following:
1) The cleaner kthread tries to start a transaction to delete an unused
block group, but the metadata reservation can not be satisfied right
away, so a reservation ticket is created and it starts the async
metadata reclaim task (fs_info->async_reclaim_work);
2) Writeback for all the filler inodes with an i_size of 2K starts
(generic/562 creates a lot of 2K files with the goal of filling
metadata space). We try to create an inline extent for them, but we
fail when trying to insert the inline extent with -ENOSPC (at
cow_file_range_inline()) - since this is not critical, we fallback
to non-inline mode (back to cow_file_range()), reserve extents
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: pcrypt - Fix hungtask for PADATA_RESET
We found a hungtask bug in test_aead_vec_cfg as follows:
INFO: task cryptomgr_test:391009 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Call trace:
__switch_to+0x98/0xe0
__schedule+0x6c4/0xf40
schedule+0xd8/0x1b4
schedule_timeout+0x474/0x560
wait_for_common+0x368/0x4e0
wait_for_completion+0x20/0x30
wait_for_completion+0x20/0x30
test_aead_vec_cfg+0xab4/0xd50
test_aead+0x144/0x1f0
alg_test_aead+0xd8/0x1e0
alg_test+0x634/0x890
cryptomgr_test+0x40/0x70
kthread+0x1e0/0x220
ret_from_fork+0x10/0x18
Kernel panic - not syncing: hung_task: blocked tasks
For padata_do_parallel, when the return err is 0 or -EBUSY, it will call
wait_for_completion(&wait->completion) in test_aead_vec_cfg. In normal
case, aead_request_complete() will be called in pcrypt_aead_serial and the
return err is 0 for padata_do_parallel. But, when pinst->flags is
PADATA_RESET, the return err is -EBUSY for padata_do_parallel, and it
won't call aead_request_complete(). Therefore, test_aead_vec_cfg will
hung at wait_for_completion(&wait->completion), which will cause
hungtask.
The problem comes as following:
(padata_do_parallel) |
rcu_read_lock_bh(); |
err = -EINVAL; | (padata_replace)
| pinst->flags |= PADATA_RESET;
err = -EBUSY |
if (pinst->flags & PADATA_RESET) |
rcu_read_unlock_bh() |
return err
In order to resolve the problem, we replace the return err -EBUSY with
-EAGAIN, which means parallel_data is changing, and the caller should call
it again.
v3:
remove retry and just change the return err.
v2:
introduce padata_try_do_parallel() in pcrypt_aead_encrypt and
pcrypt_aead_decrypt to solve the hungtask. |
| In the Linux kernel, the following vulnerability has been resolved:
debugfs: fix wait/cancellation handling during remove
Ben Greear further reports deadlocks during concurrent debugfs
remove while files are being accessed, even though the code in
question now uses debugfs cancellations. Turns out that despite
all the review on the locking, we missed completely that the
logic is wrong: if the refcount hits zero we can finish (and
need not wait for the completion), but if it doesn't we have
to trigger all the cancellations. As written, we can _never_
get into the loop triggering the cancellations. Fix this, and
explain it better while at it. |
| A vulnerability in the Simple Network Management Protocol (SNMP) subsystem of Cisco IOS XE Software could allow an authenticated, remote attacker to cause a denial of service (DoS) condition on an affected device.
This vulnerability is due to improper error handling when parsing a specific SNMP request. An attacker could exploit this vulnerability by sending a specific SNMP request to an affected device. A successful exploit could allow the attacker to cause the device to reload unexpectedly, resulting in a DoS condition.
This vulnerability affects SNMP versions 1, 2c, and 3. To exploit this vulnerability through SNMPv2c or earlier, the attacker must know a valid read-write or read-only SNMP community string for the affected system. To exploit this vulnerability through SNMPv3, the attacker must have valid SNMP user credentials for the affected system. |