Search Results (1203 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-58135 2 Microsoft, Zoom 9 Windows, Meeting Software Development Kit, Rooms and 6 more 2025-10-06 5.3 Medium
Improper action enforcement in certain Zoom Workplace Clients for Windows may allow an unauthenticated user to conduct a disclosure of information via network access.
CVE-2025-54315 1 Matrix 1 Specification 2025-10-06 7.1 High
The Matrix specification before 1.16 (i.e., with a room version before 12) lacks create event uniqueness.
CVE-2025-6714 1 Mongodb 1 Mongodb 2025-10-03 7.5 High
MongoDB Server's mongos component can become unresponsive to new connections due to incorrect handling of incomplete data. This affects MongoDB when configured with load balancer support. This issue affects MongoDB Server v6.0 prior to 6.0.23, MongoDB Server v7.0 prior to 7.0.20 and MongoDB Server v8.0 prior to 8.0.9 Required Configuration: This affects MongoDB sharded clusters when configured with load balancer support for mongos using HAProxy on specified ports.
CVE-2024-37026 1 Linux 1 Linux Kernel 2025-10-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Only use reserved BCS instances for usm migrate exec queue The GuC context scheduling queue is 2 entires deep, thus it is possible for a migration job to be stuck behind a fault if migration exec queue shares engines with user jobs. This can deadlock as the migrate exec queue is required to service page faults. Avoid deadlock by only using reserved BCS instances for usm migrate exec queue. (cherry picked from commit 04f4a70a183a688a60fe3882d6e4236ea02cfc67)
CVE-2022-48780 1 Linux 1 Linux Kernel 2025-10-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/smc: Avoid overwriting the copies of clcsock callback functions The callback functions of clcsock will be saved and replaced during the fallback. But if the fallback happens more than once, then the copies of these callback functions will be overwritten incorrectly, resulting in a loop call issue: clcsk->sk_error_report |- smc_fback_error_report() <------------------------------| |- smc_fback_forward_wakeup() | (loop) |- clcsock_callback() (incorrectly overwritten) | |- smc->clcsk_error_report() ------------------| So this patch fixes the issue by saving these function pointers only once in the fallback and avoiding overwriting.
CVE-2025-21850 1 Linux 1 Linux Kernel 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nvmet: Fix crash when a namespace is disabled The namespace percpu counter protects pending I/O, and we can only safely diable the namespace once the counter drop to zero. Otherwise we end up with a crash when running blktests/nvme/058 (eg for loop transport): [ 2352.930426] [ T53909] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000005: 0000 [#1] PREEMPT SMP KASAN PTI [ 2352.930431] [ T53909] KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f] [ 2352.930434] [ T53909] CPU: 3 UID: 0 PID: 53909 Comm: kworker/u16:5 Tainted: G W 6.13.0-rc6 #232 [ 2352.930438] [ T53909] Tainted: [W]=WARN [ 2352.930440] [ T53909] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014 [ 2352.930443] [ T53909] Workqueue: nvmet-wq nvme_loop_execute_work [nvme_loop] [ 2352.930449] [ T53909] RIP: 0010:blkcg_set_ioprio+0x44/0x180 as the queue is already torn down when calling submit_bio(); So we need to init the percpu counter in nvmet_ns_enable(), and wait for it to drop to zero in nvmet_ns_disable() to avoid having I/O pending after the namespace has been disabled.
CVE-2024-58042 1 Linux 1 Linux Kernel 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rhashtable: Fix potential deadlock by moving schedule_work outside lock Move the hash table growth check and work scheduling outside the rht lock to prevent a possible circular locking dependency. The original implementation could trigger a lockdep warning due to a potential deadlock scenario involving nested locks between rhashtable bucket, rq lock, and dsq lock. By relocating the growth check and work scheduling after releasing the rth lock, we break this potential deadlock chain. This change expands the flexibility of rhashtable by removing restrictive locking that previously limited its use in scheduler and workqueue contexts. Import to say that this calls rht_grow_above_75(), which reads from struct rhashtable without holding the lock, if this is a problem, we can move the check to the lock, and schedule the workqueue after the lock. Modified so that atomic_inc is also moved outside of the bucket lock along with the growth above 75% check.
CVE-2022-49317 1 Linux 1 Linux Kernel 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: avoid infinite loop to flush node pages xfstests/generic/475 can give EIO all the time which give an infinite loop to flush node page like below. Let's avoid it. [16418.518551] Call Trace: [16418.518553] ? dm_submit_bio+0x48/0x400 [16418.518574] ? submit_bio_checks+0x1ac/0x5a0 [16418.525207] __submit_bio+0x1a9/0x230 [16418.525210] ? kmem_cache_alloc+0x29e/0x3c0 [16418.525223] submit_bio_noacct+0xa8/0x2b0 [16418.525226] submit_bio+0x4d/0x130 [16418.525238] __submit_bio+0x49/0x310 [f2fs] [16418.525339] ? bio_add_page+0x6a/0x90 [16418.525344] f2fs_submit_page_bio+0x134/0x1f0 [f2fs] [16418.525365] read_node_page+0x125/0x1b0 [f2fs] [16418.525388] __get_node_page.part.0+0x58/0x3f0 [f2fs] [16418.525409] __get_node_page+0x2f/0x60 [f2fs] [16418.525431] f2fs_get_dnode_of_data+0x423/0x860 [f2fs] [16418.525452] ? asm_sysvec_apic_timer_interrupt+0x12/0x20 [16418.525458] ? __mod_memcg_state.part.0+0x2a/0x30 [16418.525465] ? __mod_memcg_lruvec_state+0x27/0x40 [16418.525467] ? __xa_set_mark+0x57/0x70 [16418.525472] f2fs_do_write_data_page+0x10e/0x7b0 [f2fs] [16418.525493] f2fs_write_single_data_page+0x555/0x830 [f2fs] [16418.525514] ? sysvec_apic_timer_interrupt+0x4e/0x90 [16418.525518] ? asm_sysvec_apic_timer_interrupt+0x12/0x20 [16418.525523] f2fs_write_cache_pages+0x303/0x880 [f2fs] [16418.525545] ? blk_flush_plug_list+0x47/0x100 [16418.525548] f2fs_write_data_pages+0xfd/0x320 [f2fs] [16418.525569] do_writepages+0xd5/0x210 [16418.525648] filemap_fdatawrite_wbc+0x7d/0xc0 [16418.525655] filemap_fdatawrite+0x50/0x70 [16418.525658] f2fs_sync_dirty_inodes+0xa4/0x230 [f2fs] [16418.525679] f2fs_write_checkpoint+0x16d/0x1720 [f2fs] [16418.525699] ? ttwu_do_wakeup+0x1c/0x160 [16418.525709] ? ttwu_do_activate+0x6d/0xd0 [16418.525711] ? __wait_for_common+0x11d/0x150 [16418.525715] kill_f2fs_super+0xca/0x100 [f2fs] [16418.525733] deactivate_locked_super+0x3b/0xb0 [16418.525739] deactivate_super+0x40/0x50 [16418.525741] cleanup_mnt+0x139/0x190 [16418.525747] __cleanup_mnt+0x12/0x20 [16418.525749] task_work_run+0x6d/0xa0 [16418.525765] exit_to_user_mode_prepare+0x1ad/0x1b0 [16418.525771] syscall_exit_to_user_mode+0x27/0x50 [16418.525774] do_syscall_64+0x48/0xc0 [16418.525776] entry_SYSCALL_64_after_hwframe+0x44/0xae
CVE-2025-52543 1 Copeland 8 E3 Supervisory Controller Firmware, Site Supervisor Bx 860-1240, Site Supervisor Bxe 860-1245 and 5 more 2025-10-01 7.5 High
E3 Site Supervisor Control (firmware version < 2.31F01) application services (MGW and RCI) uses client side hashing for authentication. An attacker can authenticate by obtaining only the password hash.
CVE-2023-53026 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/core: Fix ib block iterator counter overflow When registering a new DMA MR after selecting the best aligned page size for it, we iterate over the given sglist to split each entry to smaller, aligned to the selected page size, DMA blocks. In given circumstances where the sg entry and page size fit certain sizes and the sg entry is not aligned to the selected page size, the total size of the aligned pages we need to cover the sg entry is >= 4GB. Under this circumstances, while iterating page aligned blocks, the counter responsible for counting how much we advanced from the start of the sg entry is overflowed because its type is u32 and we pass 4GB in size. This can lead to an infinite loop inside the iterator function because the overflow prevents the counter to be larger than the size of the sg entry. Fix the presented problem by changing the advancement condition to eliminate overflow. Backtrace: [ 192.374329] efa_reg_user_mr_dmabuf [ 192.376783] efa_register_mr [ 192.382579] pgsz_bitmap 0xfffff000 rounddown 0x80000000 [ 192.386423] pg_sz [0x80000000] umem_length[0xc0000000] [ 192.392657] start 0x0 length 0xc0000000 params.page_shift 31 params.page_num 3 [ 192.399559] hp_cnt[3], pages_in_hp[524288] [ 192.403690] umem->sgt_append.sgt.nents[1] [ 192.407905] number entries: [1], pg_bit: [31] [ 192.411397] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8] [ 192.415601] biter->__sg_advance [665837568] sg_dma_len[3221225472] [ 192.419823] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8] [ 192.423976] biter->__sg_advance [2813321216] sg_dma_len[3221225472] [ 192.428243] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8] [ 192.432397] biter->__sg_advance [665837568] sg_dma_len[3221225472]
CVE-2023-53022 1 Linux 1 Linux Kernel 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: enetc: avoid deadlock in enetc_tx_onestep_tstamp() This lockdep splat says it better than I could: ================================ WARNING: inconsistent lock state 6.2.0-rc2-07010-ga9b9500ffaac-dirty #967 Not tainted -------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. kworker/1:3/179 [HC0[0]:SC0[0]:HE1:SE1] takes: ffff3ec4036ce098 (_xmit_ETHER#2){+.?.}-{3:3}, at: netif_freeze_queues+0x5c/0xc0 {IN-SOFTIRQ-W} state was registered at: _raw_spin_lock+0x5c/0xc0 sch_direct_xmit+0x148/0x37c __dev_queue_xmit+0x528/0x111c ip6_finish_output2+0x5ec/0xb7c ip6_finish_output+0x240/0x3f0 ip6_output+0x78/0x360 ndisc_send_skb+0x33c/0x85c ndisc_send_rs+0x54/0x12c addrconf_rs_timer+0x154/0x260 call_timer_fn+0xb8/0x3a0 __run_timers.part.0+0x214/0x26c run_timer_softirq+0x3c/0x74 __do_softirq+0x14c/0x5d8 ____do_softirq+0x10/0x20 call_on_irq_stack+0x2c/0x5c do_softirq_own_stack+0x1c/0x30 __irq_exit_rcu+0x168/0x1a0 irq_exit_rcu+0x10/0x40 el1_interrupt+0x38/0x64 irq event stamp: 7825 hardirqs last enabled at (7825): [<ffffdf1f7200cae4>] exit_to_kernel_mode+0x34/0x130 hardirqs last disabled at (7823): [<ffffdf1f708105f0>] __do_softirq+0x550/0x5d8 softirqs last enabled at (7824): [<ffffdf1f7081050c>] __do_softirq+0x46c/0x5d8 softirqs last disabled at (7811): [<ffffdf1f708166e0>] ____do_softirq+0x10/0x20 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(_xmit_ETHER#2); <Interrupt> lock(_xmit_ETHER#2); *** DEADLOCK *** 3 locks held by kworker/1:3/179: #0: ffff3ec400004748 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0 #1: ffff80000a0bbdc8 ((work_completion)(&priv->tx_onestep_tstamp)){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0 #2: ffff3ec4036cd438 (&dev->tx_global_lock){+.+.}-{3:3}, at: netif_tx_lock+0x1c/0x34 Workqueue: events enetc_tx_onestep_tstamp Call trace: print_usage_bug.part.0+0x208/0x22c mark_lock+0x7f0/0x8b0 __lock_acquire+0x7c4/0x1ce0 lock_acquire.part.0+0xe0/0x220 lock_acquire+0x68/0x84 _raw_spin_lock+0x5c/0xc0 netif_freeze_queues+0x5c/0xc0 netif_tx_lock+0x24/0x34 enetc_tx_onestep_tstamp+0x20/0x100 process_one_work+0x28c/0x6c0 worker_thread+0x74/0x450 kthread+0x118/0x11c but I'll say it anyway: the enetc_tx_onestep_tstamp() work item runs in process context, therefore with softirqs enabled (i.o.w., it can be interrupted by a softirq). If we hold the netif_tx_lock() when there is an interrupt, and the NET_TX softirq then gets scheduled, this will take the netif_tx_lock() a second time and deadlock the kernel. To solve this, use netif_tx_lock_bh(), which blocks softirqs from running.
CVE-2025-23134 1 Linux 1 Linux Kernel 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: timer: Don't take register_mutex with copy_from/to_user() The infamous mmap_lock taken in copy_from/to_user() can be often problematic when it's called inside another mutex, as they might lead to deadlocks. In the case of ALSA timer code, the bad pattern is with guard(mutex)(&register_mutex) that covers copy_from/to_user() -- which was mistakenly introduced at converting to guard(), and it had been carefully worked around in the past. This patch fixes those pieces simply by moving copy_from/to_user() out of the register mutex lock again.
CVE-2024-58097 1 Linux 1 Linux Kernel 2025-10-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix RCU stall while reaping monitor destination ring While processing the monitor destination ring, MSDUs are reaped from the link descriptor based on the corresponding buf_id. However, sometimes the driver cannot obtain a valid buffer corresponding to the buf_id received from the hardware. This causes an infinite loop in the destination processing, resulting in a kernel crash. kernel log: ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309 ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309 ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed Fix this by skipping the problematic buf_id and reaping the next entry, replacing the break with the next MSDU processing. Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30 Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1
CVE-2025-6365 1 Hobbesosr 1 Kitten 2025-09-30 5.7 Medium
A vulnerability was found in HobbesOSR Kitten up to c4f8b7c3158983d1020af432be1b417b28686736 and classified as critical. Affected by this issue is the function set_pte_at in the library /include/arch-arm64/pgtable.h. The manipulation leads to resource consumption. Continious delivery with rolling releases is used by this product. Therefore, no version details of affected nor updated releases are available.
CVE-2024-35180 1 Openmicroscopy 1 Omero-web 2025-09-29 6.1 Medium
OMERO.web provides a web based client and plugin infrastructure. There is currently no escaping or validation of the `callback` parameter that can be passed to various OMERO.web endpoints that have JSONP enabled. This vulnerability has been patched in version 5.26.0.
CVE-2024-43820 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm-raid: Fix WARN_ON_ONCE check for sync_thread in raid_resume rm-raid devices will occasionally trigger the following warning when being resumed after a table load because DM_RECOVERY_RUNNING is set: WARNING: CPU: 7 PID: 5660 at drivers/md/dm-raid.c:4105 raid_resume+0xee/0x100 [dm_raid] The failing check is: WARN_ON_ONCE(test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); This check is designed to make sure that the sync thread isn't registered, but md_check_recovery can set MD_RECOVERY_RUNNING without the sync_thread ever getting registered. Instead of checking if MD_RECOVERY_RUNNING is set, check if sync_thread is non-NULL.
CVE-2022-48664 1 Linux 2 Linux, Linux Kernel 2025-09-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix hang during unmount when stopping a space reclaim worker Often when running generic/562 from fstests we can hang during unmount, resulting in a trace like this: Sep 07 11:52:00 debian9 unknown: run fstests generic/562 at 2022-09-07 11:52:00 Sep 07 11:55:32 debian9 kernel: INFO: task umount:49438 blocked for more than 120 seconds. Sep 07 11:55:32 debian9 kernel: Not tainted 6.0.0-rc2-btrfs-next-122 #1 Sep 07 11:55:32 debian9 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. Sep 07 11:55:32 debian9 kernel: task:umount state:D stack: 0 pid:49438 ppid: 25683 flags:0x00004000 Sep 07 11:55:32 debian9 kernel: Call Trace: Sep 07 11:55:32 debian9 kernel: <TASK> Sep 07 11:55:32 debian9 kernel: __schedule+0x3c8/0xec0 Sep 07 11:55:32 debian9 kernel: ? rcu_read_lock_sched_held+0x12/0x70 Sep 07 11:55:32 debian9 kernel: schedule+0x5d/0xf0 Sep 07 11:55:32 debian9 kernel: schedule_timeout+0xf1/0x130 Sep 07 11:55:32 debian9 kernel: ? lock_release+0x224/0x4a0 Sep 07 11:55:32 debian9 kernel: ? lock_acquired+0x1a0/0x420 Sep 07 11:55:32 debian9 kernel: ? trace_hardirqs_on+0x2c/0xd0 Sep 07 11:55:32 debian9 kernel: __wait_for_common+0xac/0x200 Sep 07 11:55:32 debian9 kernel: ? usleep_range_state+0xb0/0xb0 Sep 07 11:55:32 debian9 kernel: __flush_work+0x26d/0x530 Sep 07 11:55:32 debian9 kernel: ? flush_workqueue_prep_pwqs+0x140/0x140 Sep 07 11:55:32 debian9 kernel: ? trace_clock_local+0xc/0x30 Sep 07 11:55:32 debian9 kernel: __cancel_work_timer+0x11f/0x1b0 Sep 07 11:55:32 debian9 kernel: ? close_ctree+0x12b/0x5b3 [btrfs] Sep 07 11:55:32 debian9 kernel: ? __trace_bputs+0x10b/0x170 Sep 07 11:55:32 debian9 kernel: close_ctree+0x152/0x5b3 [btrfs] Sep 07 11:55:32 debian9 kernel: ? evict_inodes+0x166/0x1c0 Sep 07 11:55:32 debian9 kernel: generic_shutdown_super+0x71/0x120 Sep 07 11:55:32 debian9 kernel: kill_anon_super+0x14/0x30 Sep 07 11:55:32 debian9 kernel: btrfs_kill_super+0x12/0x20 [btrfs] Sep 07 11:55:32 debian9 kernel: deactivate_locked_super+0x2e/0xa0 Sep 07 11:55:32 debian9 kernel: cleanup_mnt+0x100/0x160 Sep 07 11:55:32 debian9 kernel: task_work_run+0x59/0xa0 Sep 07 11:55:32 debian9 kernel: exit_to_user_mode_prepare+0x1a6/0x1b0 Sep 07 11:55:32 debian9 kernel: syscall_exit_to_user_mode+0x16/0x40 Sep 07 11:55:32 debian9 kernel: do_syscall_64+0x48/0x90 Sep 07 11:55:32 debian9 kernel: entry_SYSCALL_64_after_hwframe+0x63/0xcd Sep 07 11:55:32 debian9 kernel: RIP: 0033:0x7fcde59a57a7 Sep 07 11:55:32 debian9 kernel: RSP: 002b:00007ffe914217c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 Sep 07 11:55:32 debian9 kernel: RAX: 0000000000000000 RBX: 00007fcde5ae8264 RCX: 00007fcde59a57a7 Sep 07 11:55:32 debian9 kernel: RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000055b57556cdd0 Sep 07 11:55:32 debian9 kernel: RBP: 000055b57556cba0 R08: 0000000000000000 R09: 00007ffe91420570 Sep 07 11:55:32 debian9 kernel: R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 Sep 07 11:55:32 debian9 kernel: R13: 000055b57556cdd0 R14: 000055b57556ccb8 R15: 0000000000000000 Sep 07 11:55:32 debian9 kernel: </TASK> What happens is the following: 1) The cleaner kthread tries to start a transaction to delete an unused block group, but the metadata reservation can not be satisfied right away, so a reservation ticket is created and it starts the async metadata reclaim task (fs_info->async_reclaim_work); 2) Writeback for all the filler inodes with an i_size of 2K starts (generic/562 creates a lot of 2K files with the goal of filling metadata space). We try to create an inline extent for them, but we fail when trying to insert the inline extent with -ENOSPC (at cow_file_range_inline()) - since this is not critical, we fallback to non-inline mode (back to cow_file_range()), reserve extents ---truncated---
CVE-2023-52813 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-09-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: pcrypt - Fix hungtask for PADATA_RESET We found a hungtask bug in test_aead_vec_cfg as follows: INFO: task cryptomgr_test:391009 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. Call trace: __switch_to+0x98/0xe0 __schedule+0x6c4/0xf40 schedule+0xd8/0x1b4 schedule_timeout+0x474/0x560 wait_for_common+0x368/0x4e0 wait_for_completion+0x20/0x30 wait_for_completion+0x20/0x30 test_aead_vec_cfg+0xab4/0xd50 test_aead+0x144/0x1f0 alg_test_aead+0xd8/0x1e0 alg_test+0x634/0x890 cryptomgr_test+0x40/0x70 kthread+0x1e0/0x220 ret_from_fork+0x10/0x18 Kernel panic - not syncing: hung_task: blocked tasks For padata_do_parallel, when the return err is 0 or -EBUSY, it will call wait_for_completion(&wait->completion) in test_aead_vec_cfg. In normal case, aead_request_complete() will be called in pcrypt_aead_serial and the return err is 0 for padata_do_parallel. But, when pinst->flags is PADATA_RESET, the return err is -EBUSY for padata_do_parallel, and it won't call aead_request_complete(). Therefore, test_aead_vec_cfg will hung at wait_for_completion(&wait->completion), which will cause hungtask. The problem comes as following: (padata_do_parallel) | rcu_read_lock_bh(); | err = -EINVAL; | (padata_replace) | pinst->flags |= PADATA_RESET; err = -EBUSY | if (pinst->flags & PADATA_RESET) | rcu_read_unlock_bh() | return err In order to resolve the problem, we replace the return err -EBUSY with -EAGAIN, which means parallel_data is changing, and the caller should call it again. v3: remove retry and just change the return err. v2: introduce padata_try_do_parallel() in pcrypt_aead_encrypt and pcrypt_aead_decrypt to solve the hungtask.
CVE-2024-35793 1 Linux 1 Linux Kernel 2025-09-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: debugfs: fix wait/cancellation handling during remove Ben Greear further reports deadlocks during concurrent debugfs remove while files are being accessed, even though the code in question now uses debugfs cancellations. Turns out that despite all the review on the locking, we missed completely that the logic is wrong: if the refcount hits zero we can finish (and need not wait for the completion), but if it doesn't we have to trigger all the cancellations. As written, we can _never_ get into the loop triggering the cancellations. Fix this, and explain it better while at it.
CVE-2025-20312 1 Cisco 1 Ios Xe Software 2025-09-26 7.7 High
A vulnerability in the Simple Network Management Protocol (SNMP) subsystem of Cisco IOS XE Software could allow an authenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper error handling when parsing a specific SNMP request. An attacker could exploit this vulnerability by sending a specific SNMP request to an affected device. A successful exploit could allow the attacker to cause the device to reload unexpectedly, resulting in a DoS condition. This vulnerability affects SNMP versions 1, 2c, and 3. To exploit this vulnerability through SNMPv2c or earlier, the attacker must know a valid read-write or read-only SNMP community string for the affected system. To exploit this vulnerability through SNMPv3, the attacker must have valid SNMP user credentials for the affected system.