| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Incorrect Usage of Seeds in Pseudo-Random Number Generator (CWE- 335) vulnerability in the High Sec ELM may allow a sophisticated attacker with physical access, to compromise internal device communications.
This issue affects Command Centre Server:
9.30 prior to vCR9.30.251028a (distributed in 9.30.2881 (MR3)), 9.20 prior to vCR9.20.251028a (distributed in 9.20.3265 (MR5)), 9.10 prior to vCR9.10.251028a (distributed in 9.10.4135 (MR8)), all versions of 9.00 and prior. |
| Missing Release of Resource after Effective Lifetime (CWE-772) in the T21 Reader allows an attacker with physical access to the Reader to perform a denial-of-service attack against that specific reader, preventing cardholders from badging for entry.
This issue affects Command Centre Server:
9.30 prior to vCR9.30.251028a (distributed in 9.30.2881 (MR3)), 9.20 prior to vCR9.20.251028a (distributed in 9.20.3265 (MR5)), 9.10 prior to vCR9.10.251028a (distributed in 9.10.4135 (MR8)), all versions of 9.00 and prior. |
| The Gravity Forms plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in the legacy chunked upload mechanism in all versions up to, and including, 2.9.21.1. This is due to the extension blacklist not including .phar files, which can be uploaded through the chunked upload mechanism. This makes it possible for unauthenticated attackers to upload executable .phar files and achieve remote code execution on the server, granted they can discover or enumerate the upload path. In order for an attacker to achieve RCE, the web server needs to be set up to process .phar file as PHP via file handler mapping or similar. |
| The VK All in One Expansion Unit plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the '_veu_custom_css' parameter in all versions up to, and including, 9.112.1. This is due to insufficient input sanitization and output escaping on the user-supplied Custom CSS value. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that execute whenever a user accesses an injected page. |
| IBM Db2 10.5.0 through 10.5.11, 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes Db2 Connect Server) is vulnerable to a denial of service as the server may crash under certain conditions with a specially crafted query. |
| The VK All in One Expansion Unit plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'vkExUnit_cta_url' and 'vkExUnit_cta_button_text' parameters in all versions up to, and including, 9.112.1. This is due to a logic error in the CTA save function that reads sanitization callbacks from the wrong variable ($custom_field_name instead of $custom_field_options), causing the sanitization to never be applied. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that execute when a user accesses an injected page.", |
| Stack buffer overflow vulnerability exists in the Supermicro BMC Shared library. An authenticated attacker with access to the BMC exploit stack buffer via a crafted header and achieve arbitrary code execution of the BMC’s firmware operating system. |
| There is a vulnerability in the Supermicro BMC web function at Supermicro MBD-X13SEDW-F. After logging into the BMC Web server, an attacker can use a specially crafted payload to trigger the Stack buffer overflow vulnerability. |
| IBM Db2 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes Db2 Connect Server) is vulnerable to a denial of service as the server may crash under certain conditions with a specially crafted query. |
| IBM Db2 10.5.0 through 10.5.11, 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux could allow an authenticated user to regain access after account lockout due to password use after expiration date. |
| IBM Db2 10.5.0 through 10.5.11, 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes Db2 Connect Server) could allow an authenticated user to cause a denial due to the improper release of resources after use. |
| IBM Db2 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes Db2 Connect Server) could allow an authenticated user to cause a denial of service due to improper allocation of resources. |
| IBM Db2 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes Db2 Connect Server) clpplus command exposes user credentials to the terminal which could be obtained by a third party with physical access to the system. |
| IBM Db2 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes DB2 Connect Server) could allow a local user to cause a denial of service due to the database monitor script incorrectly detecting that the instance is still starting under specific conditions. |
| pgAdmin versions up to 9.9 are affected by a Remote Code Execution (RCE) vulnerability that occurs when running in server mode and performing restores from PLAIN-format dump files. This issue allows attackers to inject and execute arbitrary commands on the server hosting pgAdmin, posing a critical risk to the integrity and security of the database management system and underlying data. |
| Deserialization of Untrusted Data vulnerability in Apache Jackrabbit Core and Apache Jackrabbit JCR Commons.
This issue affects Apache Jackrabbit Core: from 1.0.0 through 2.22.1; Apache Jackrabbit JCR Commons: from 1.0.0 through 2.22.1.
Deployments that accept JNDI URIs for JCR lookup from untrusted users allows them to inject malicious JNDI references, potentially leading to arbitrary code execution through deserialization of untrusted data.
Users are recommended to upgrade to version 2.22.2. JCR lookup through JNDI has been disabled by default in 2.22.2. Users of this feature need to enable it explicitly and are adviced to review their use of JNDI URI for JCR lookup. |
| pgAdmin 4 versions up to 9.9 are affected by a command injection vulnerability on Windows systems. This issue is caused by the use of shell=True during backup and restore operations, enabling attackers to execute arbitrary system commands by providing specially crafted file path input. |
| MicroWorld eScan AV's update mechanism failed to ensure authenticity and integrity of updates: update packages were delivered and accepted without robust cryptographic verification. As a result, an on-path attacker could perform a man-in-the-middle (MitM) attack and substitute malicious update payloads for legitimate ones. The eScan AV client accepted these substituted packages and executed or loaded their components (including sideloaded DLLs and Java/installer payloads), enabling remote code execution on affected systems. MicroWorld eScan confirmed remediation of the update mechanism on 2023-07-31 but versioning details are unavailable. NOTE: MicroWorld eScan disputes the characterization in third-party reports, stating the issue relates to 2018–2019 and that controls were implemented then. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: fnic: Fix crash in fnic_wq_cmpl_handler when FDMI times out
When both the RHBA and RPA FDMI requests time out, fnic reuses a frame to
send ABTS for each of them. On send completion, this causes an attempt to
free the same frame twice that leads to a crash.
Fix crash by allocating separate frames for RHBA and RPA, and modify ABTS
logic accordingly.
Tested by checking MDS for FDMI information.
Tested by using instrumented driver to:
- Drop PLOGI response
- Drop RHBA response
- Drop RPA response
- Drop RHBA and RPA response
- Drop PLOGI response + ABTS response
- Drop RHBA response + ABTS response
- Drop RPA response + ABTS response
- Drop RHBA and RPA response + ABTS response for both of them |
| In the Linux kernel, the following vulnerability has been resolved:
mm/shmem, swap: fix softlockup with mTHP swapin
Following softlockup can be easily reproduced on my test machine with:
echo always > /sys/kernel/mm/transparent_hugepage/hugepages-64kB/enabled
swapon /dev/zram0 # zram0 is a 48G swap device
mkdir -p /sys/fs/cgroup/memory/test
echo 1G > /sys/fs/cgroup/test/memory.max
echo $BASHPID > /sys/fs/cgroup/test/cgroup.procs
while true; do
dd if=/dev/zero of=/tmp/test.img bs=1M count=5120
cat /tmp/test.img > /dev/null
rm /tmp/test.img
done
Then after a while:
watchdog: BUG: soft lockup - CPU#0 stuck for 763s! [cat:5787]
Modules linked in: zram virtiofs
CPU: 0 UID: 0 PID: 5787 Comm: cat Kdump: loaded Tainted: G L 6.15.0.orig-gf3021d9246bc-dirty #118 PREEMPT(voluntary)·
Tainted: [L]=SOFTLOCKUP
Hardware name: Red Hat KVM/RHEL-AV, BIOS 0.0.0 02/06/2015
RIP: 0010:mpol_shared_policy_lookup+0xd/0x70
Code: e9 b8 b4 ff ff 31 c0 c3 cc cc cc cc 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 0f 1f 00 0f 1f 44 00 00 41 54 55 53 <48> 8b 1f 48 85 db 74 41 4c 8d 67 08 48 89 fb 48 89 f5 4c 89 e7 e8
RSP: 0018:ffffc90002b1fc28 EFLAGS: 00000202
RAX: 00000000001c20ca RBX: 0000000000724e1e RCX: 0000000000000001
RDX: ffff888118e214c8 RSI: 0000000000057d42 RDI: ffff888118e21518
RBP: 000000000002bec8 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000bf4 R11: 0000000000000000 R12: 0000000000000001
R13: 00000000001c20ca R14: 00000000001c20ca R15: 0000000000000000
FS: 00007f03f995c740(0000) GS:ffff88a07ad9a000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f03f98f1000 CR3: 0000000144626004 CR4: 0000000000770eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
shmem_alloc_folio+0x31/0xc0
shmem_swapin_folio+0x309/0xcf0
? filemap_get_entry+0x117/0x1e0
? xas_load+0xd/0xb0
? filemap_get_entry+0x101/0x1e0
shmem_get_folio_gfp+0x2ed/0x5b0
shmem_file_read_iter+0x7f/0x2e0
vfs_read+0x252/0x330
ksys_read+0x68/0xf0
do_syscall_64+0x4c/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f03f9a46991
Code: 00 48 8b 15 81 14 10 00 f7 d8 64 89 02 b8 ff ff ff ff eb bd e8 20 ad 01 00 f3 0f 1e fa 80 3d 35 97 10 00 00 74 13 31 c0 0f 05 <48> 3d 00 f0 ff ff 77 4f c3 66 0f 1f 44 00 00 55 48 89 e5 48 83 ec
RSP: 002b:00007fff3c52bd28 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
RAX: ffffffffffffffda RBX: 0000000000040000 RCX: 00007f03f9a46991
RDX: 0000000000040000 RSI: 00007f03f98ba000 RDI: 0000000000000003
RBP: 00007fff3c52bd50 R08: 0000000000000000 R09: 00007f03f9b9a380
R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000040000
R13: 00007f03f98ba000 R14: 0000000000000003 R15: 0000000000000000
</TASK>
The reason is simple, readahead brought some order 0 folio in swap cache,
and the swapin mTHP folio being allocated is in conflict with it, so
swapcache_prepare fails and causes shmem_swap_alloc_folio to return
-EEXIST, and shmem simply retries again and again causing this loop.
Fix it by applying a similar fix for anon mTHP swapin.
The performance change is very slight, time of swapin 10g zero folios
with shmem (test for 12 times):
Before: 2.47s
After: 2.48s
[kasong@tencent.com: add comment] |