| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Deserialization of Untrusted Data vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows Object Injection.This issue affects DX NetOps Spectrum: 24.3.13 and earlier. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport
[Why]
Potential out of bounds access in dml2_calculate_rq_and_dlg_params()
because the value of out_lowest_state_idx used as an index for FCLKChangeSupport
array can be greater than 1.
[How]
Currently dml2 core specifies identical values for all FCLKChangeSupport
elements. Always use index 0 in the condition to avoid out of bounds access. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: avoid double free special payload
If a discard request needs to be retried, and that retry may fail before
a new special payload is added, a double free will result. Clear the
RQF_SPECIAL_LOAD when the request is cleaned. |
| In the Linux kernel, the following vulnerability has been resolved:
block/ioctl: prefer different overflow check
Running syzkaller with the newly reintroduced signed integer overflow
sanitizer shows this report:
[ 62.982337] ------------[ cut here ]------------
[ 62.985692] cgroup: Invalid name
[ 62.986211] UBSAN: signed-integer-overflow in ../block/ioctl.c:36:46
[ 62.989370] 9pnet_fd: p9_fd_create_tcp (7343): problem connecting socket to 127.0.0.1
[ 62.992992] 9223372036854775807 + 4095 cannot be represented in type 'long long'
[ 62.997827] 9pnet_fd: p9_fd_create_tcp (7345): problem connecting socket to 127.0.0.1
[ 62.999369] random: crng reseeded on system resumption
[ 63.000634] GUP no longer grows the stack in syz-executor.2 (7353): 20002000-20003000 (20001000)
[ 63.000668] CPU: 0 PID: 7353 Comm: syz-executor.2 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1
[ 63.000677] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 63.000682] Call Trace:
[ 63.000686] <TASK>
[ 63.000731] dump_stack_lvl+0x93/0xd0
[ 63.000919] __get_user_pages+0x903/0xd30
[ 63.001030] __gup_longterm_locked+0x153e/0x1ba0
[ 63.001041] ? _raw_read_unlock_irqrestore+0x17/0x50
[ 63.001072] ? try_get_folio+0x29c/0x2d0
[ 63.001083] internal_get_user_pages_fast+0x1119/0x1530
[ 63.001109] iov_iter_extract_pages+0x23b/0x580
[ 63.001206] bio_iov_iter_get_pages+0x4de/0x1220
[ 63.001235] iomap_dio_bio_iter+0x9b6/0x1410
[ 63.001297] __iomap_dio_rw+0xab4/0x1810
[ 63.001316] iomap_dio_rw+0x45/0xa0
[ 63.001328] ext4_file_write_iter+0xdde/0x1390
[ 63.001372] vfs_write+0x599/0xbd0
[ 63.001394] ksys_write+0xc8/0x190
[ 63.001403] do_syscall_64+0xd4/0x1b0
[ 63.001421] ? arch_exit_to_user_mode_prepare+0x3a/0x60
[ 63.001479] entry_SYSCALL_64_after_hwframe+0x6f/0x77
[ 63.001535] RIP: 0033:0x7f7fd3ebf539
[ 63.001551] Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 f1 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
[ 63.001562] RSP: 002b:00007f7fd32570c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 63.001584] RAX: ffffffffffffffda RBX: 00007f7fd3ff3f80 RCX: 00007f7fd3ebf539
[ 63.001590] RDX: 4db6d1e4f7e43360 RSI: 0000000020000000 RDI: 0000000000000004
[ 63.001595] RBP: 00007f7fd3f1e496 R08: 0000000000000000 R09: 0000000000000000
[ 63.001599] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[ 63.001604] R13: 0000000000000006 R14: 00007f7fd3ff3f80 R15: 00007ffd415ad2b8
...
[ 63.018142] ---[ end trace ]---
Historically, the signed integer overflow sanitizer did not work in the
kernel due to its interaction with `-fwrapv` but this has since been
changed [1] in the newest version of Clang; It was re-enabled in the
kernel with Commit 557f8c582a9ba8ab ("ubsan: Reintroduce signed overflow
sanitizer").
Let's rework this overflow checking logic to not actually perform an
overflow during the check itself, thus avoiding the UBSAN splat.
[1]: https://github.com/llvm/llvm-project/pull/82432 |
| Unspecified vulnerability in the ExternalInterface ActionScript functionality in Adobe Flash Player before 10.3.183.67 and 11.x before 11.6.602.171 on Windows and Mac OS X, and before 10.3.183.67 and 11.x before 11.2.202.273 on Linux, allows remote attackers to execute arbitrary code via crafted SWF content, as exploited in the wild in February 2013. |
| In the Linux kernel, the following vulnerability has been resolved:
media: venus: Add a check for packet size after reading from shared memory
Add a check to ensure that the packet size does not exceed the number of
available words after reading the packet header from shared memory. This
ensures that the size provided by the firmware is safe to process and
prevent potential out-of-bounds memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
media: usbtv: Lock resolution while streaming
When an program is streaming (ffplay) and another program (qv4l2)
changes the TV standard from NTSC to PAL, the kernel crashes due to trying
to copy to unmapped memory.
Changing from NTSC to PAL increases the resolution in the usbtv struct,
but the video plane buffer isn't adjusted, so it overflows.
[hverkuil: call vb2_is_busy instead of vb2_is_streaming] |
| In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: fix panic due to PSLVERR
When the PSLVERR_RESP_EN parameter is set to 1, the device generates
an error response if an attempt is made to read an empty RBR (Receive
Buffer Register) while the FIFO is enabled.
In serial8250_do_startup(), calling serial_port_out(port, UART_LCR,
UART_LCR_WLEN8) triggers dw8250_check_lcr(), which invokes
dw8250_force_idle() and serial8250_clear_and_reinit_fifos(). The latter
function enables the FIFO via serial_out(p, UART_FCR, p->fcr).
Execution proceeds to the serial_port_in(port, UART_RX).
This satisfies the PSLVERR trigger condition.
When another CPU (e.g., using printk()) is accessing the UART (UART
is busy), the current CPU fails the check (value & ~UART_LCR_SPAR) ==
(lcr & ~UART_LCR_SPAR) in dw8250_check_lcr(), causing it to enter
dw8250_force_idle().
Put serial_port_out(port, UART_LCR, UART_LCR_WLEN8) under the port->lock
to fix this issue.
Panic backtrace:
[ 0.442336] Oops - unknown exception [#1]
[ 0.442343] epc : dw8250_serial_in32+0x1e/0x4a
[ 0.442351] ra : serial8250_do_startup+0x2c8/0x88e
...
[ 0.442416] console_on_rootfs+0x26/0x70 |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix filehandle bounds checking in nfs_fh_to_dentry()
The function needs to check the minimal filehandle length before it can
access the embedded filehandle. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "fs/ntfs3: Replace inode_trylock with inode_lock"
This reverts commit 69505fe98f198ee813898cbcaf6770949636430b.
Initially, conditional lock acquisition was removed to fix an xfstest bug
that was observed during internal testing. The deadlock reported by syzbot
is resolved by reintroducing conditional acquisition. The xfstest bug no
longer occurs on kernel version 6.16-rc1 during internal testing. I
assume that changes in other modules may have contributed to this. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: Fix use-after-free in cifs_fill_dirent
There is a race condition in the readdir concurrency process, which may
access the rsp buffer after it has been released, triggering the
following KASAN warning.
==================================================================
BUG: KASAN: slab-use-after-free in cifs_fill_dirent+0xb03/0xb60 [cifs]
Read of size 4 at addr ffff8880099b819c by task a.out/342975
CPU: 2 UID: 0 PID: 342975 Comm: a.out Not tainted 6.15.0-rc6+ #240 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x53/0x70
print_report+0xce/0x640
kasan_report+0xb8/0xf0
cifs_fill_dirent+0xb03/0xb60 [cifs]
cifs_readdir+0x12cb/0x3190 [cifs]
iterate_dir+0x1a1/0x520
__x64_sys_getdents+0x134/0x220
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f996f64b9f9
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89
f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01
f0 ff ff 0d f7 c3 0c 00 f7 d8 64 89 8
RSP: 002b:00007f996f53de78 EFLAGS: 00000207 ORIG_RAX: 000000000000004e
RAX: ffffffffffffffda RBX: 00007f996f53ecdc RCX: 00007f996f64b9f9
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007f996f53dea0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000207 R12: ffffffffffffff88
R13: 0000000000000000 R14: 00007ffc8cd9a500 R15: 00007f996f51e000
</TASK>
Allocated by task 408:
kasan_save_stack+0x20/0x40
kasan_save_track+0x14/0x30
__kasan_slab_alloc+0x6e/0x70
kmem_cache_alloc_noprof+0x117/0x3d0
mempool_alloc_noprof+0xf2/0x2c0
cifs_buf_get+0x36/0x80 [cifs]
allocate_buffers+0x1d2/0x330 [cifs]
cifs_demultiplex_thread+0x22b/0x2690 [cifs]
kthread+0x394/0x720
ret_from_fork+0x34/0x70
ret_from_fork_asm+0x1a/0x30
Freed by task 342979:
kasan_save_stack+0x20/0x40
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x37/0x50
kmem_cache_free+0x2b8/0x500
cifs_buf_release+0x3c/0x70 [cifs]
cifs_readdir+0x1c97/0x3190 [cifs]
iterate_dir+0x1a1/0x520
__x64_sys_getdents64+0x134/0x220
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The buggy address belongs to the object at ffff8880099b8000
which belongs to the cache cifs_request of size 16588
The buggy address is located 412 bytes inside of
freed 16588-byte region [ffff8880099b8000, ffff8880099bc0cc)
The buggy address belongs to the physical page:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x99b8
head: order:3 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
anon flags: 0x80000000000040(head|node=0|zone=1)
page_type: f5(slab)
raw: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001
raw: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000
head: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001
head: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000
head: 0080000000000003 ffffea0000266e01 00000000ffffffff 00000000ffffffff
head: ffffffffffffffff 0000000000000000 00000000ffffffff 0000000000000008
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8880099b8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880099b8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8880099b8180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8880099b8200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880099b8280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
POC is available in the link [1].
The problem triggering process is as follows:
Process 1 Process 2
-----------------------------------
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/ipv6: release expired exception dst cached in socket
Dst objects get leaked in ip6_negative_advice() when this function is
executed for an expired IPv6 route located in the exception table. There
are several conditions that must be fulfilled for the leak to occur:
* an ICMPv6 packet indicating a change of the MTU for the path is received,
resulting in an exception dst being created
* a TCP connection that uses the exception dst for routing packets must
start timing out so that TCP begins retransmissions
* after the exception dst expires, the FIB6 garbage collector must not run
before TCP executes ip6_negative_advice() for the expired exception dst
When TCP executes ip6_negative_advice() for an exception dst that has
expired and if no other socket holds a reference to the exception dst, the
refcount of the exception dst is 2, which corresponds to the increment
made by dst_init() and the increment made by the TCP socket for which the
connection is timing out. The refcount made by the socket is never
released. The refcount of the dst is decremented in sk_dst_reset() but
that decrement is counteracted by a dst_hold() intentionally placed just
before the sk_dst_reset() in ip6_negative_advice(). After
ip6_negative_advice() has finished, there is no other object tied to the
dst. The socket lost its reference stored in sk_dst_cache and the dst is
no longer in the exception table. The exception dst becomes a leaked
object.
As a result of this dst leak, an unbalanced refcount is reported for the
loopback device of a net namespace being destroyed under kernels that do
not contain e5f80fcf869a ("ipv6: give an IPv6 dev to blackhole_netdev"):
unregister_netdevice: waiting for lo to become free. Usage count = 2
Fix the dst leak by removing the dst_hold() in ip6_negative_advice(). The
patch that introduced the dst_hold() in ip6_negative_advice() was
92f1655aa2b22 ("net: fix __dst_negative_advice() race"). But 92f1655aa2b22
merely refactored the code with regards to the dst refcount so the issue
was present even before 92f1655aa2b22. The bug was introduced in
54c1a859efd9f ("ipv6: Don't drop cache route entry unless timer actually
expired.") where the expired cached route is deleted and the sk_dst_cache
member of the socket is set to NULL by calling dst_negative_advice() but
the refcount belonging to the socket is left unbalanced.
The IPv4 version - ipv4_negative_advice() - is not affected by this bug.
When the TCP connection times out ipv4_negative_advice() merely resets the
sk_dst_cache of the socket while decrementing the refcount of the
exception dst. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: Initialise rcv_mss before calling tcp_send_active_reset() in mptcp_do_fastclose().
syzbot reported divide-by-zero in __tcp_select_window() by
MPTCP socket. [0]
We had a similar issue for the bare TCP and fixed in commit
499350a5a6e7 ("tcp: initialize rcv_mss to TCP_MIN_MSS instead
of 0").
Let's apply the same fix to mptcp_do_fastclose().
[0]:
Oops: divide error: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 6068 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
RIP: 0010:__tcp_select_window+0x824/0x1320 net/ipv4/tcp_output.c:3336
Code: ff ff ff 44 89 f1 d3 e0 89 c1 f7 d1 41 01 cc 41 21 c4 e9 a9 00 00 00 e8 ca 49 01 f8 e9 9c 00 00 00 e8 c0 49 01 f8 44 89 e0 99 <f7> 7c 24 1c 41 29 d4 48 bb 00 00 00 00 00 fc ff df e9 80 00 00 00
RSP: 0018:ffffc90003017640 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff88807b469e40
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc90003017730 R08: ffff888033268143 R09: 1ffff1100664d028
R10: dffffc0000000000 R11: ffffed100664d029 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 000055557faa0500(0000) GS:ffff888126135000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f64a1912ff8 CR3: 0000000072122000 CR4: 00000000003526f0
Call Trace:
<TASK>
tcp_select_window net/ipv4/tcp_output.c:281 [inline]
__tcp_transmit_skb+0xbc7/0x3aa0 net/ipv4/tcp_output.c:1568
tcp_transmit_skb net/ipv4/tcp_output.c:1649 [inline]
tcp_send_active_reset+0x2d1/0x5b0 net/ipv4/tcp_output.c:3836
mptcp_do_fastclose+0x27e/0x380 net/mptcp/protocol.c:2793
mptcp_disconnect+0x238/0x710 net/mptcp/protocol.c:3253
mptcp_sendmsg_fastopen+0x2f8/0x580 net/mptcp/protocol.c:1776
mptcp_sendmsg+0x1774/0x1980 net/mptcp/protocol.c:1855
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0xe5/0x270 net/socket.c:742
__sys_sendto+0x3bd/0x520 net/socket.c:2244
__do_sys_sendto net/socket.c:2251 [inline]
__se_sys_sendto net/socket.c:2247 [inline]
__x64_sys_sendto+0xde/0x100 net/socket.c:2247
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f66e998f749
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffff9acedb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f66e9be5fa0 RCX: 00007f66e998f749
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007ffff9acee10 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001
R13: 00007f66e9be5fa0 R14: 00007f66e9be5fa0 R15: 0000000000000006
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: fix admin request_queue lifetime
The namespaces can access the controller's admin request_queue, and
stale references on the namespaces may exist after tearing down the
controller. Ensure the admin request_queue is active by moving the
controller's 'put' to after all controller references have been released
to ensure no one is can access the request_queue. This fixes a reported
use-after-free bug:
BUG: KASAN: slab-use-after-free in blk_queue_enter+0x41c/0x4a0
Read of size 8 at addr ffff88c0a53819f8 by task nvme/3287
CPU: 67 UID: 0 PID: 3287 Comm: nvme Tainted: G E 6.13.2-ga1582f1a031e #15
Tainted: [E]=UNSIGNED_MODULE
Hardware name: Jabil /EGS 2S MB1, BIOS 1.00 06/18/2025
Call Trace:
<TASK>
dump_stack_lvl+0x4f/0x60
print_report+0xc4/0x620
? _raw_spin_lock_irqsave+0x70/0xb0
? _raw_read_unlock_irqrestore+0x30/0x30
? blk_queue_enter+0x41c/0x4a0
kasan_report+0xab/0xe0
? blk_queue_enter+0x41c/0x4a0
blk_queue_enter+0x41c/0x4a0
? __irq_work_queue_local+0x75/0x1d0
? blk_queue_start_drain+0x70/0x70
? irq_work_queue+0x18/0x20
? vprintk_emit.part.0+0x1cc/0x350
? wake_up_klogd_work_func+0x60/0x60
blk_mq_alloc_request+0x2b7/0x6b0
? __blk_mq_alloc_requests+0x1060/0x1060
? __switch_to+0x5b7/0x1060
nvme_submit_user_cmd+0xa9/0x330
nvme_user_cmd.isra.0+0x240/0x3f0
? force_sigsegv+0xe0/0xe0
? nvme_user_cmd64+0x400/0x400
? vfs_fileattr_set+0x9b0/0x9b0
? cgroup_update_frozen_flag+0x24/0x1c0
? cgroup_leave_frozen+0x204/0x330
? nvme_ioctl+0x7c/0x2c0
blkdev_ioctl+0x1a8/0x4d0
? blkdev_common_ioctl+0x1930/0x1930
? fdget+0x54/0x380
__x64_sys_ioctl+0x129/0x190
do_syscall_64+0x5b/0x160
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f765f703b0b
Code: ff ff ff 85 c0 79 9b 49 c7 c4 ff ff ff ff 5b 5d 4c 89 e0 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d dd 52 0f 00 f7 d8 64 89 01 48
RSP: 002b:00007ffe2cefe808 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007ffe2cefe860 RCX: 00007f765f703b0b
RDX: 00007ffe2cefe860 RSI: 00000000c0484e41 RDI: 0000000000000003
RBP: 0000000000000000 R08: 0000000000000003 R09: 0000000000000000
R10: 00007f765f611d50 R11: 0000000000000202 R12: 0000000000000003
R13: 00000000c0484e41 R14: 0000000000000001 R15: 00007ffe2cefea60
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Remove improper idxd_free
The call to idxd_free() introduces a duplicate put_device() leading to a
reference count underflow:
refcount_t: underflow; use-after-free.
WARNING: CPU: 15 PID: 4428 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110
...
Call Trace:
<TASK>
idxd_remove+0xe4/0x120 [idxd]
pci_device_remove+0x3f/0xb0
device_release_driver_internal+0x197/0x200
driver_detach+0x48/0x90
bus_remove_driver+0x74/0xf0
pci_unregister_driver+0x2e/0xb0
idxd_exit_module+0x34/0x7a0 [idxd]
__do_sys_delete_module.constprop.0+0x183/0x280
do_syscall_64+0x54/0xd70
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The idxd_unregister_devices() which is invoked at the very beginning of
idxd_remove(), already takes care of the necessary put_device() through the
following call path:
idxd_unregister_devices() -> device_unregister() -> put_device()
In addition, when CONFIG_DEBUG_KOBJECT_RELEASE is enabled, put_device() may
trigger asynchronous cleanup via schedule_delayed_work(). If idxd_free() is
called immediately after, it can result in a use-after-free.
Remove the improper idxd_free() to avoid both the refcount underflow and
potential memory corruption during module unload. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: sja1105: fix kasan out-of-bounds warning in sja1105_table_delete_entry()
There are actually 2 problems:
- deleting the last element doesn't require the memmove of elements
[i + 1, end) over it. Actually, element i+1 is out of bounds.
- The memmove itself should move size - i - 1 elements, because the last
element is out of bounds.
The out-of-bounds element still remains out of bounds after being
accessed, so the problem is only that we touch it, not that it becomes
in active use. But I suppose it can lead to issues if the out-of-bounds
element is part of an unmapped page. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm/pat: Fix VM_PAT handling when fork() fails in copy_page_range()
If track_pfn_copy() fails, we already added the dst VMA to the maple
tree. As fork() fails, we'll cleanup the maple tree, and stumble over
the dst VMA for which we neither performed any reservation nor copied
any page tables.
Consequently untrack_pfn() will see VM_PAT and try obtaining the
PAT information from the page table -- which fails because the page
table was not copied.
The easiest fix would be to simply clear the VM_PAT flag of the dst VMA
if track_pfn_copy() fails. However, the whole thing is about "simply"
clearing the VM_PAT flag is shaky as well: if we passed track_pfn_copy()
and performed a reservation, but copying the page tables fails, we'll
simply clear the VM_PAT flag, not properly undoing the reservation ...
which is also wrong.
So let's fix it properly: set the VM_PAT flag only if the reservation
succeeded (leaving it clear initially), and undo the reservation if
anything goes wrong while copying the page tables: clearing the VM_PAT
flag after undoing the reservation.
Note that any copied page table entries will get zapped when the VMA will
get removed later, after copy_page_range() succeeded; as VM_PAT is not set
then, we won't try cleaning VM_PAT up once more and untrack_pfn() will be
happy. Note that leaving these page tables in place without a reservation
is not a problem, as we are aborting fork(); this process will never run.
A reproducer can trigger this usually at the first try:
https://gitlab.com/davidhildenbrand/scratchspace/-/raw/main/reproducers/pat_fork.c
WARNING: CPU: 26 PID: 11650 at arch/x86/mm/pat/memtype.c:983 get_pat_info+0xf6/0x110
Modules linked in: ...
CPU: 26 UID: 0 PID: 11650 Comm: repro3 Not tainted 6.12.0-rc5+ #92
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:get_pat_info+0xf6/0x110
...
Call Trace:
<TASK>
...
untrack_pfn+0x52/0x110
unmap_single_vma+0xa6/0xe0
unmap_vmas+0x105/0x1f0
exit_mmap+0xf6/0x460
__mmput+0x4b/0x120
copy_process+0x1bf6/0x2aa0
kernel_clone+0xab/0x440
__do_sys_clone+0x66/0x90
do_syscall_64+0x95/0x180
Likely this case was missed in:
d155df53f310 ("x86/mm/pat: clear VM_PAT if copy_p4d_range failed")
... and instead of undoing the reservation we simply cleared the VM_PAT flag.
Keep the documentation of these functions in include/linux/pgtable.h,
one place is more than sufficient -- we should clean that up for the other
functions like track_pfn_remap/untrack_pfn separately. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix out-of-bounds in parse_sec_desc()
If osidoffset, gsidoffset and dacloffset could be greater than smb_ntsd
struct size. If it is smaller, It could cause slab-out-of-bounds.
And when validating sid, It need to check it included subauth array size. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: state: fix out-of-bounds read during lookup
lookup and resize can run in parallel.
The xfrm_state_hash_generation seqlock ensures a retry, but the hash
functions can observe a hmask value that is too large for the new hlist
array.
rehash does:
rcu_assign_pointer(net->xfrm.state_bydst, ndst) [..]
net->xfrm.state_hmask = nhashmask;
While state lookup does:
h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
This is only safe in case the update to state_bydst is larger than
net->xfrm.xfrm_state_hmask (or if the lookup function gets
serialized via state spinlock again).
Fix this by prefetching state_hmask and the associated pointers.
The xfrm_state_hash_generation seqlock retry will ensure that the pointer
and the hmask will be consistent.
The existing helpers, like xfrm_dst_hash(), are now unsafe for RCU side,
add lockdep assertions to document that they are only safe for insert
side.
xfrm_state_lookup_byaddr() uses the spinlock rather than RCU.
AFAICS this is an oversight from back when state lookup was converted to
RCU, this lock should be replaced with RCU in a future patch. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Remove the direct link to net_device
The similar patch in siw is in the link:
https://git.kernel.org/rdma/rdma/c/16b87037b48889
This problem also occurred in RXE. The following analyze this problem.
In the following Call Traces:
"
BUG: KASAN: slab-use-after-free in dev_get_flags+0x188/0x1d0 net/core/dev.c:8782
Read of size 4 at addr ffff8880554640b0 by task kworker/1:4/5295
CPU: 1 UID: 0 PID: 5295 Comm: kworker/1:4 Not tainted
6.12.0-rc3-syzkaller-00399-g9197b73fd7bb #0
Hardware name: Google Compute Engine/Google Compute Engine,
BIOS Google 09/13/2024
Workqueue: infiniband ib_cache_event_task
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
dev_get_flags+0x188/0x1d0 net/core/dev.c:8782
rxe_query_port+0x12d/0x260 drivers/infiniband/sw/rxe/rxe_verbs.c:60
__ib_query_port drivers/infiniband/core/device.c:2111 [inline]
ib_query_port+0x168/0x7d0 drivers/infiniband/core/device.c:2143
ib_cache_update+0x1a9/0xb80 drivers/infiniband/core/cache.c:1494
ib_cache_event_task+0xf3/0x1e0 drivers/infiniband/core/cache.c:1568
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa65/0x1850 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f2/0x390 kernel/kthread.c:389
ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
"
1). In the link [1],
"
infiniband syz2: set down
"
This means that on 839.350575, the event ib_cache_event_task was sent andi
queued in ib_wq.
2). In the link [1],
"
team0 (unregistering): Port device team_slave_0 removed
"
It indicates that before 843.251853, the net device should be freed.
3). In the link [1],
"
BUG: KASAN: slab-use-after-free in dev_get_flags+0x188/0x1d0
"
This means that on 850.559070, this slab-use-after-free problem occurred.
In all, on 839.350575, the event ib_cache_event_task was sent and queued
in ib_wq,
before 843.251853, the net device veth was freed.
on 850.559070, this event was executed, and the mentioned freed net device
was called. Thus, the above call trace occurred.
[1] https://syzkaller.appspot.com/x/log.txt?x=12e7025f980000 |