| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix mc_data out-of-bounds read warning
Clear warning that read mc_data[i-1] may out-of-bounds. |
| In the Linux kernel, the following vulnerability has been resolved:
apparmor: fix possible NULL pointer dereference
profile->parent->dents[AAFS_PROF_DIR] could be NULL only if its parent is made
from __create_missing_ancestors(..) and 'ent->old' is NULL in
aa_replace_profiles(..).
In that case, it must return an error code and the code, -ENOENT represents
its state that the path of its parent is not existed yet.
BUG: kernel NULL pointer dereference, address: 0000000000000030
PGD 0 P4D 0
PREEMPT SMP PTI
CPU: 4 PID: 3362 Comm: apparmor_parser Not tainted 6.8.0-24-generic #24
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
RIP: 0010:aafs_create.constprop.0+0x7f/0x130
Code: 4c 63 e0 48 83 c4 18 4c 89 e0 5b 41 5c 41 5d 41 5e 41 5f 5d 31 d2 31 c9 31 f6 31 ff 45 31 c0 45 31 c9 45 31 d2 c3 cc cc cc cc <4d> 8b 55 30 4d 8d ba a0 00 00 00 4c 89 55 c0 4c 89 ff e8 7a 6a ae
RSP: 0018:ffffc9000b2c7c98 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000000041ed RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc9000b2c7cd8 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff82baac10
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007be9f22cf740(0000) GS:ffff88817bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000030 CR3: 0000000134b08000 CR4: 00000000000006f0
Call Trace:
<TASK>
? show_regs+0x6d/0x80
? __die+0x24/0x80
? page_fault_oops+0x99/0x1b0
? kernelmode_fixup_or_oops+0xb2/0x140
? __bad_area_nosemaphore+0x1a5/0x2c0
? find_vma+0x34/0x60
? bad_area_nosemaphore+0x16/0x30
? do_user_addr_fault+0x2a2/0x6b0
? exc_page_fault+0x83/0x1b0
? asm_exc_page_fault+0x27/0x30
? aafs_create.constprop.0+0x7f/0x130
? aafs_create.constprop.0+0x51/0x130
__aafs_profile_mkdir+0x3d6/0x480
aa_replace_profiles+0x83f/0x1270
policy_update+0xe3/0x180
profile_load+0xbc/0x150
? rw_verify_area+0x47/0x140
vfs_write+0x100/0x480
? __x64_sys_openat+0x55/0xa0
? syscall_exit_to_user_mode+0x86/0x260
ksys_write+0x73/0x100
__x64_sys_write+0x19/0x30
x64_sys_call+0x7e/0x25c0
do_syscall_64+0x7f/0x180
entry_SYSCALL_64_after_hwframe+0x78/0x80
RIP: 0033:0x7be9f211c574
Code: c7 00 16 00 00 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 80 3d d5 ea 0e 00 00 74 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 55 48 89 e5 48 83 ec 20 48 89
RSP: 002b:00007ffd26f2b8c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00005d504415e200 RCX: 00007be9f211c574
RDX: 0000000000001fc1 RSI: 00005d504418bc80 RDI: 0000000000000004
RBP: 0000000000001fc1 R08: 0000000000001fc1 R09: 0000000080000000
R10: 0000000000000000 R11: 0000000000000202 R12: 00005d504418bc80
R13: 0000000000000004 R14: 00007ffd26f2b9b0 R15: 00007ffd26f2ba30
</TASK>
Modules linked in: snd_seq_dummy snd_hrtimer qrtr snd_hda_codec_generic snd_hda_intel snd_intel_dspcfg snd_intel_sdw_acpi snd_hda_codec snd_hda_core snd_hwdep snd_pcm snd_seq_midi snd_seq_midi_event snd_rawmidi snd_seq snd_seq_device i2c_i801 snd_timer i2c_smbus qxl snd soundcore drm_ttm_helper lpc_ich ttm joydev input_leds serio_raw mac_hid binfmt_misc msr parport_pc ppdev lp parport efi_pstore nfnetlink dmi_sysfs qemu_fw_cfg ip_tables x_tables autofs4 hid_generic usbhid hid ahci libahci psmouse virtio_rng xhci_pci xhci_pci_renesas
CR2: 0000000000000030
---[ end trace 0000000000000000 ]---
RIP: 0010:aafs_create.constprop.0+0x7f/0x130
Code: 4c 63 e0 48 83 c4 18 4c 89 e0 5b 41 5c 41 5d 41 5e 41 5f 5d 31 d2 31 c9 31 f6 31 ff 45 31 c0 45 31 c9 45 31 d2 c3 cc cc cc cc <4d> 8b 55 30 4d 8d ba a0 00 00 00 4c 89 55 c0 4c 89 ff e8 7a 6a ae
RSP: 0018:ffffc9000b2c7c98 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000000041ed RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc9000b2c7cd8 R08: 0000000000000000 R09: 0000000000000000
R10: 0000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix dereference after null check
check the pointer hive before use. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Fix null pointer dereference in trace
ucsi_register_altmode checks IS_ERR for the alt pointer and treats
NULL as valid. When CONFIG_TYPEC_DP_ALTMODE is not enabled,
ucsi_register_displayport returns NULL which causes a NULL pointer
dereference in trace. Rather than return NULL, call
typec_port_register_altmode to register DisplayPort alternate mode
as a non-controllable mode when CONFIG_TYPEC_DP_ALTMODE is not enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: SHAMPO, Fix incorrect page release
Under the following conditions:
1) No skb created yet
2) header_size == 0 (no SHAMPO header)
3) header_index + 1 % MLX5E_SHAMPO_WQ_HEADER_PER_PAGE == 0 (this is the
last page fragment of a SHAMPO header page)
a new skb is formed with a page that is NOT a SHAMPO header page (it
is a regular data page). Further down in the same function
(mlx5e_handle_rx_cqe_mpwrq_shampo()), a SHAMPO header page from
header_index is released. This is wrong and it leads to SHAMPO header
pages being released more than once. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: altera-msgdma: properly free descriptor in msgdma_free_descriptor
Remove list_del call in msgdma_chan_desc_cleanup, this should be the role
of msgdma_free_descriptor. In consequence replace list_add_tail with
list_move_tail in msgdma_free_descriptor.
This fixes the path:
msgdma_free_chan_resources -> msgdma_free_descriptors ->
msgdma_free_desc_list -> msgdma_free_descriptor
which does not correctly free the descriptors as first nodes were not
removed from the list. |
| In the Linux kernel, the following vulnerability has been resolved:
driver: iio: add missing checks on iio_info's callback access
Some callbacks from iio_info structure are accessed without any check, so
if a driver doesn't implement them trying to access the corresponding
sysfs entries produce a kernel oops such as:
[ 2203.527791] Unable to handle kernel NULL pointer dereference at virtual address 00000000 when execute
[...]
[ 2203.783416] Call trace:
[ 2203.783429] iio_read_channel_info_avail from dev_attr_show+0x18/0x48
[ 2203.789807] dev_attr_show from sysfs_kf_seq_show+0x90/0x120
[ 2203.794181] sysfs_kf_seq_show from seq_read_iter+0xd0/0x4e4
[ 2203.798555] seq_read_iter from vfs_read+0x238/0x2a0
[ 2203.802236] vfs_read from ksys_read+0xa4/0xd4
[ 2203.805385] ksys_read from ret_fast_syscall+0x0/0x54
[ 2203.809135] Exception stack(0xe0badfa8 to 0xe0badff0)
[ 2203.812880] dfa0: 00000003 b6f10f80 00000003 b6eab000 00020000 00000000
[ 2203.819746] dfc0: 00000003 b6f10f80 7ff00000 00000003 00000003 00000000 00020000 00000000
[ 2203.826619] dfe0: b6e1bc88 bed80958 b6e1bc94 b6e1bcb0
[ 2203.830363] Code: bad PC value
[ 2203.832695] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Skip wbscl_set_scaler_filter if filter is null
Callers can pass null in filter (i.e. from returned from the function
wbscl_get_filter_coeffs_16p) and a null check is added to ensure that is
not the case.
This fixes 4 NULL_RETURNS issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/aux: Fix AUX buffer serialization
Ole reported that event->mmap_mutex is strictly insufficient to
serialize the AUX buffer, add a per RB mutex to fully serialize it.
Note that in the lock order comment the perf_event::mmap_mutex order
was already wrong, that is, it nesting under mmap_lock is not new with
this patch. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: pm: fix ID 0 endp usage after multiple re-creations
'local_addr_used' and 'add_addr_accepted' are decremented for addresses
not related to the initial subflow (ID0), because the source and
destination addresses of the initial subflows are known from the
beginning: they don't count as "additional local address being used" or
"ADD_ADDR being accepted".
It is then required not to increment them when the entrypoint used by
the initial subflow is removed and re-added during a connection. Without
this modification, this entrypoint cannot be removed and re-added more
than once. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Prevent unmapping active read buffers
The kms paths keep a persistent map active to read and compare the cursor
buffer. These maps can race with each other in simple scenario where:
a) buffer "a" mapped for update
b) buffer "a" mapped for compare
c) do the compare
d) unmap "a" for compare
e) update the cursor
f) unmap "a" for update
At step "e" the buffer has been unmapped and the read contents is bogus.
Prevent unmapping of active read buffers by simply keeping a count of
how many paths have currently active maps and unmap only when the count
reaches 0. |
| In the Linux kernel, the following vulnerability has been resolved:
thunderbolt: Mark XDomain as unplugged when router is removed
I noticed that when we do discrete host router NVM upgrade and it gets
hot-removed from the PCIe side as a result of NVM firmware authentication,
if there is another host connected with enabled paths we hang in tearing
them down. This is due to fact that the Thunderbolt networking driver
also tries to cleanup the paths and ends up blocking in
tb_disconnect_xdomain_paths() waiting for the domain lock.
However, at this point we already cleaned the paths in tb_stop() so
there is really no need for tb_disconnect_xdomain_paths() to do that
anymore. Furthermore it already checks if the XDomain is unplugged and
bails out early so take advantage of that and mark the XDomain as
unplugged when we remove the parent router. |
| In the Linux kernel, the following vulnerability has been resolved:
selinux,smack: don't bypass permissions check in inode_setsecctx hook
Marek Gresko reports that the root user on an NFS client is able to
change the security labels on files on an NFS filesystem that is
exported with root squashing enabled.
The end of the kerneldoc comment for __vfs_setxattr_noperm() states:
* This function requires the caller to lock the inode's i_mutex before it
* is executed. It also assumes that the caller will make the appropriate
* permission checks.
nfsd_setattr() does do permissions checking via fh_verify() and
nfsd_permission(), but those don't do all the same permissions checks
that are done by security_inode_setxattr() and its related LSM hooks do.
Since nfsd_setattr() is the only consumer of security_inode_setsecctx(),
simplest solution appears to be to replace the call to
__vfs_setxattr_noperm() with a call to __vfs_setxattr_locked(). This
fixes the above issue and has the added benefit of causing nfsd to
recall conflicting delegations on a file when a client tries to change
its security label. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: avoid using null object of framebuffer
Instead of using state->fb->obj[0] directly, get object from framebuffer
by calling drm_gem_fb_get_obj() and return error code when object is
null to avoid using null object of framebuffer.
(cherry picked from commit 73dd0ad9e5dad53766ea3e631303430116f834b3) |
| In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: cmd-db: Map shared memory as WC, not WB
Linux does not write into cmd-db region. This region of memory is write
protected by XPU. XPU may sometime falsely detect clean cache eviction
as "write" into the write protected region leading to secure interrupt
which causes an endless loop somewhere in Trust Zone.
The only reason it is working right now is because Qualcomm Hypervisor
maps the same region as Non-Cacheable memory in Stage 2 translation
tables. The issue manifests if we want to use another hypervisor (like
Xen or KVM), which does not know anything about those specific mappings.
Changing the mapping of cmd-db memory from MEMREMAP_WB to MEMREMAP_WT/WC
removes dependency on correct mappings in Stage 2 tables. This patch
fixes the issue by updating the mapping to MEMREMAP_WC.
I tested this on SA8155P with Xen. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/client: avoid dereferencing rdata=NULL in smb2_new_read_req()
This happens when called from SMB2_read() while using rdma
and reaching the rdma_readwrite_threshold. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: single: fix potential NULL dereference in pcs_get_function()
pinmux_generic_get_function() can return NULL and the pointer 'function'
was dereferenced without checking against NULL. Add checking of pointer
'function' in pcs_get_function().
Found by code review. |
| In the Linux kernel, the following vulnerability has been resolved:
ethtool: check device is present when getting link settings
A sysfs reader can race with a device reset or removal, attempting to
read device state when the device is not actually present. eg:
[exception RIP: qed_get_current_link+17]
#8 [ffffb9e4f2907c48] qede_get_link_ksettings at ffffffffc07a994a [qede]
#9 [ffffb9e4f2907cd8] __rh_call_get_link_ksettings at ffffffff992b01a3
#10 [ffffb9e4f2907d38] __ethtool_get_link_ksettings at ffffffff992b04e4
#11 [ffffb9e4f2907d90] duplex_show at ffffffff99260300
#12 [ffffb9e4f2907e38] dev_attr_show at ffffffff9905a01c
#13 [ffffb9e4f2907e50] sysfs_kf_seq_show at ffffffff98e0145b
#14 [ffffb9e4f2907e68] seq_read at ffffffff98d902e3
#15 [ffffb9e4f2907ec8] vfs_read at ffffffff98d657d1
#16 [ffffb9e4f2907f00] ksys_read at ffffffff98d65c3f
#17 [ffffb9e4f2907f38] do_syscall_64 at ffffffff98a052fb
crash> struct net_device.state ffff9a9d21336000
state = 5,
state 5 is __LINK_STATE_START (0b1) and __LINK_STATE_NOCARRIER (0b100).
The device is not present, note lack of __LINK_STATE_PRESENT (0b10).
This is the same sort of panic as observed in commit 4224cfd7fb65
("net-sysfs: add check for netdevice being present to speed_show").
There are many other callers of __ethtool_get_link_ksettings() which
don't have a device presence check.
Move this check into ethtool to protect all callers. |
| In the Linux kernel, the following vulnerability has been resolved:
gtp: fix a potential NULL pointer dereference
When sockfd_lookup() fails, gtp_encap_enable_socket() returns a
NULL pointer, but its callers only check for error pointers thus miss
the NULL pointer case.
Fix it by returning an error pointer with the error code carried from
sockfd_lookup().
(I found this bug during code inspection.) |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: pn533: Add poll mod list filling check
In case of im_protocols value is 1 and tm_protocols value is 0 this
combination successfully passes the check
'if (!im_protocols && !tm_protocols)' in the nfc_start_poll().
But then after pn533_poll_create_mod_list() call in pn533_start_poll()
poll mod list will remain empty and dev->poll_mod_count will remain 0
which lead to division by zero.
Normally no im protocol has value 1 in the mask, so this combination is
not expected by driver. But these protocol values actually come from
userspace via Netlink interface (NFC_CMD_START_POLL operation). So a
broken or malicious program may pass a message containing a "bad"
combination of protocol parameter values so that dev->poll_mod_count
is not incremented inside pn533_poll_create_mod_list(), thus leading
to division by zero.
Call trace looks like:
nfc_genl_start_poll()
nfc_start_poll()
->start_poll()
pn533_start_poll()
Add poll mod list filling check.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |