Search

Search Results (325277 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68359 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix double free of qgroup record after failure to add delayed ref head In the previous code it was possible to incur into a double kfree() scenario when calling add_delayed_ref_head(). This could happen if the record was reported to already exist in the btrfs_qgroup_trace_extent_nolock() call, but then there was an error later on add_delayed_ref_head(). In this case, since add_delayed_ref_head() returned an error, the caller went to free the record. Since add_delayed_ref_head() couldn't set this kfree'd pointer to NULL, then kfree() would have acted on a non-NULL 'record' object which was pointing to memory already freed by the callee. The problem comes from the fact that the responsibility to kfree the object is on both the caller and the callee at the same time. Hence, the fix for this is to shift the ownership of the 'qrecord' object out of the add_delayed_ref_head(). That is, we will never attempt to kfree() the given object inside of this function, and will expect the caller to act on the 'qrecord' object on its own. The only exception where the 'qrecord' object cannot be kfree'd is if it was inserted into the tracing logic, for which we already have the 'qrecord_inserted_ret' boolean to account for this. Hence, the caller has to kfree the object only if add_delayed_ref_head() reports not to have inserted it on the tracing logic. As a side-effect of the above, we must guarantee that 'qrecord_inserted_ret' is properly initialized at the start of the function, not at the end, and then set when an actual insert happens. This way we avoid 'qrecord_inserted_ret' having an invalid value on an early exit. The documentation from the add_delayed_ref_head() has also been updated to reflect on the exact ownership of the 'qrecord' object.
CVE-2025-68366 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nbd: defer config unlock in nbd_genl_connect There is one use-after-free warning when running NBD_CMD_CONNECT and NBD_CLEAR_SOCK: nbd_genl_connect nbd_alloc_and_init_config // config_refs=1 nbd_start_device // config_refs=2 set NBD_RT_HAS_CONFIG_REF open nbd // config_refs=3 recv_work done // config_refs=2 NBD_CLEAR_SOCK // config_refs=1 close nbd // config_refs=0 refcount_inc -> uaf ------------[ cut here ]------------ refcount_t: addition on 0; use-after-free. WARNING: CPU: 24 PID: 1014 at lib/refcount.c:25 refcount_warn_saturate+0x12e/0x290 nbd_genl_connect+0x16d0/0x1ab0 genl_family_rcv_msg_doit+0x1f3/0x310 genl_rcv_msg+0x44a/0x790 The issue can be easily reproduced by adding a small delay before refcount_inc(&nbd->config_refs) in nbd_genl_connect(): mutex_unlock(&nbd->config_lock); if (!ret) { set_bit(NBD_RT_HAS_CONFIG_REF, &config->runtime_flags); + printk("before sleep\n"); + mdelay(5 * 1000); + printk("after sleep\n"); refcount_inc(&nbd->config_refs); nbd_connect_reply(info, nbd->index); }
CVE-2025-68372 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nbd: defer config put in recv_work There is one uaf issue in recv_work when running NBD_CLEAR_SOCK and NBD_CMD_RECONFIGURE: nbd_genl_connect // conf_ref=2 (connect and recv_work A) nbd_open // conf_ref=3 recv_work A done // conf_ref=2 NBD_CLEAR_SOCK // conf_ref=1 nbd_genl_reconfigure // conf_ref=2 (trigger recv_work B) close nbd // conf_ref=1 recv_work B config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Or only running NBD_CLEAR_SOCK: nbd_genl_connect // conf_ref=2 nbd_open // conf_ref=3 NBD_CLEAR_SOCK // conf_ref=2 close nbd nbd_release config_put // conf_ref=1 recv_work config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Commit 87aac3a80af5 ("nbd: call nbd_config_put() before notifying the waiter") moved nbd_config_put() to run before waking up the waiter in recv_work, in order to ensure that nbd_start_device_ioctl() would not be woken up while nbd->task_recv was still uncleared. However, in nbd_start_device_ioctl(), after being woken up it explicitly calls flush_workqueue() to make sure all current works are finished. Therefore, there is no need to move the config put ahead of the wakeup. Move nbd_config_put() to the end of recv_work, so that the reference is held for the whole lifetime of the worker thread. This makes sure the config cannot be freed while recv_work is still running, even if clear + reconfigure interleave. In addition, we don't need to worry about recv_work dropping the last nbd_put (which causes deadlock): path A (netlink with NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=1 (trigger recv_work) open nbd // nbd_refs=2 NBD_CLEAR_SOCK close nbd nbd_release nbd_disconnect_and_put flush_workqueue // recv_work done nbd_config_put nbd_put // nbd_refs=1 nbd_put // nbd_refs=0 queue_work path B (netlink without NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=2 (trigger recv_work) open nbd // nbd_refs=3 NBD_CLEAR_SOCK // conf_refs=2 close nbd nbd_release nbd_config_put // conf_refs=1 nbd_put // nbd_refs=2 recv_work done // conf_refs=0, nbd_refs=1 rmmod // nbd_refs=0 Depends-on: e2daec488c57 ("nbd: Fix hungtask when nbd_config_put")
CVE-2025-68379 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix null deref on srq->rq.queue after resize failure A NULL pointer dereference can occur in rxe_srq_chk_attr() when ibv_modify_srq() is invoked twice in succession under certain error conditions. The first call may fail in rxe_queue_resize(), which leads rxe_srq_from_attr() to set srq->rq.queue = NULL. The second call then triggers a crash (null deref) when accessing srq->rq.queue->buf->index_mask. Call Trace: <TASK> rxe_modify_srq+0x170/0x480 [rdma_rxe] ? __pfx_rxe_modify_srq+0x10/0x10 [rdma_rxe] ? uverbs_try_lock_object+0x4f/0xa0 [ib_uverbs] ? rdma_lookup_get_uobject+0x1f0/0x380 [ib_uverbs] ib_uverbs_modify_srq+0x204/0x290 [ib_uverbs] ? __pfx_ib_uverbs_modify_srq+0x10/0x10 [ib_uverbs] ? tryinc_node_nr_active+0xe6/0x150 ? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs] ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x2c0/0x470 [ib_uverbs] ? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs] ? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs] ib_uverbs_run_method+0x55a/0x6e0 [ib_uverbs] ? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs] ib_uverbs_cmd_verbs+0x54d/0x800 [ib_uverbs] ? __pfx_ib_uverbs_cmd_verbs+0x10/0x10 [ib_uverbs] ? __pfx___raw_spin_lock_irqsave+0x10/0x10 ? __pfx_do_vfs_ioctl+0x10/0x10 ? ioctl_has_perm.constprop.0.isra.0+0x2c7/0x4c0 ? __pfx_ioctl_has_perm.constprop.0.isra.0+0x10/0x10 ib_uverbs_ioctl+0x13e/0x220 [ib_uverbs] ? __pfx_ib_uverbs_ioctl+0x10/0x10 [ib_uverbs] __x64_sys_ioctl+0x138/0x1c0 do_syscall_64+0x82/0x250 ? fdget_pos+0x58/0x4c0 ? ksys_write+0xf3/0x1c0 ? __pfx_ksys_write+0x10/0x10 ? do_syscall_64+0xc8/0x250 ? __pfx_vm_mmap_pgoff+0x10/0x10 ? fget+0x173/0x230 ? fput+0x2a/0x80 ? ksys_mmap_pgoff+0x224/0x4c0 ? do_syscall_64+0xc8/0x250 ? do_user_addr_fault+0x37b/0xfe0 ? clear_bhb_loop+0x50/0xa0 ? clear_bhb_loop+0x50/0xa0 ? clear_bhb_loop+0x50/0xa0 entry_SYSCALL_64_after_hwframe+0x76/0x7e
CVE-2022-50714 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921e: fix rmmod crash in driver reload test In insmod/rmmod stress test, the following crash dump shows up immediately. The problem is caused by missing mt76_dev in mt7921_pci_remove(). We should make sure the drvdata is ready before probe() finished. [168.862789] ================================================================== [168.862797] BUG: KASAN: user-memory-access in try_to_grab_pending+0x59/0x480 [168.862805] Write of size 8 at addr 0000000000006df0 by task rmmod/5361 [168.862812] CPU: 7 PID: 5361 Comm: rmmod Tainted: G OE 5.19.0-rc6 #1 [168.862816] Hardware name: Intel(R) Client Systems NUC8i7BEH/NUC8BEB, 05/04/2020 [168.862820] Call Trace: [168.862822] <TASK> [168.862825] dump_stack_lvl+0x49/0x63 [168.862832] print_report.cold+0x493/0x6b7 [168.862845] kasan_report+0xa7/0x120 [168.862857] kasan_check_range+0x163/0x200 [168.862861] __kasan_check_write+0x14/0x20 [168.862866] try_to_grab_pending+0x59/0x480 [168.862870] __cancel_work_timer+0xbb/0x340 [168.862898] cancel_work_sync+0x10/0x20 [168.862902] mt7921_pci_remove+0x61/0x1c0 [mt7921e] [168.862909] pci_device_remove+0xa3/0x1d0 [168.862914] device_remove+0xc4/0x170 [168.862920] device_release_driver_internal+0x163/0x300 [168.862925] driver_detach+0xc7/0x1a0 [168.862930] bus_remove_driver+0xeb/0x2d0 [168.862935] driver_unregister+0x71/0xb0 [168.862939] pci_unregister_driver+0x30/0x230 [168.862944] mt7921_pci_driver_exit+0x10/0x1b [mt7921e] [168.862949] __x64_sys_delete_module+0x2f9/0x4b0 [168.862968] do_syscall_64+0x38/0x90 [168.862973] entry_SYSCALL_64_after_hwframe+0x63/0xcd Test steps: 1. insmode 2. do not ifup 3. rmmod quickly (within 1 second)
CVE-2022-50715 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md/raid1: stop mdx_raid1 thread when raid1 array run failed fail run raid1 array when we assemble array with the inactive disk only, but the mdx_raid1 thread were not stop, Even if the associated resources have been released. it will caused a NULL dereference when we do poweroff. This causes the following Oops: [ 287.587787] BUG: kernel NULL pointer dereference, address: 0000000000000070 [ 287.594762] #PF: supervisor read access in kernel mode [ 287.599912] #PF: error_code(0x0000) - not-present page [ 287.605061] PGD 0 P4D 0 [ 287.607612] Oops: 0000 [#1] SMP NOPTI [ 287.611287] CPU: 3 PID: 5265 Comm: md0_raid1 Tainted: G U 5.10.146 #0 [ 287.619029] Hardware name: xxxxxxx/To be filled by O.E.M, BIOS 5.19 06/16/2022 [ 287.626775] RIP: 0010:md_check_recovery+0x57/0x500 [md_mod] [ 287.632357] Code: fe 01 00 00 48 83 bb 10 03 00 00 00 74 08 48 89 ...... [ 287.651118] RSP: 0018:ffffc90000433d78 EFLAGS: 00010202 [ 287.656347] RAX: 0000000000000000 RBX: ffff888105986800 RCX: 0000000000000000 [ 287.663491] RDX: ffffc90000433bb0 RSI: 00000000ffffefff RDI: ffff888105986800 [ 287.670634] RBP: ffffc90000433da0 R08: 0000000000000000 R09: c0000000ffffefff [ 287.677771] R10: 0000000000000001 R11: ffffc90000433ba8 R12: ffff888105986800 [ 287.684907] R13: 0000000000000000 R14: fffffffffffffe00 R15: ffff888100b6b500 [ 287.692052] FS: 0000000000000000(0000) GS:ffff888277f80000(0000) knlGS:0000000000000000 [ 287.700149] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 287.705897] CR2: 0000000000000070 CR3: 000000000320a000 CR4: 0000000000350ee0 [ 287.713033] Call Trace: [ 287.715498] raid1d+0x6c/0xbbb [raid1] [ 287.719256] ? __schedule+0x1ff/0x760 [ 287.722930] ? schedule+0x3b/0xb0 [ 287.726260] ? schedule_timeout+0x1ed/0x290 [ 287.730456] ? __switch_to+0x11f/0x400 [ 287.734219] md_thread+0xe9/0x140 [md_mod] [ 287.738328] ? md_thread+0xe9/0x140 [md_mod] [ 287.742601] ? wait_woken+0x80/0x80 [ 287.746097] ? md_register_thread+0xe0/0xe0 [md_mod] [ 287.751064] kthread+0x11a/0x140 [ 287.754300] ? kthread_park+0x90/0x90 [ 287.757974] ret_from_fork+0x1f/0x30 In fact, when raid1 array run fail, we need to do md_unregister_thread() before raid1_free().
CVE-2023-54097 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regulator: stm32-pwr: fix of_iomap leak Smatch reports: drivers/regulator/stm32-pwr.c:166 stm32_pwr_regulator_probe() warn: 'base' from of_iomap() not released on lines: 151,166. In stm32_pwr_regulator_probe(), base is not released when devm_kzalloc() fails to allocate memory or devm_regulator_register() fails to register a new regulator device, which may cause a leak. To fix this issue, replace of_iomap() with devm_platform_ioremap_resource(). devm_platform_ioremap_resource() is a specialized function for platform devices. It allows 'base' to be automatically released whether the probe function succeeds or fails. Besides, use IS_ERR(base) instead of !base as the return value of devm_platform_ioremap_resource() can either be a pointer to the remapped memory or an ERR_PTR() encoded error code if the operation fails.
CVE-2023-54096 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: soundwire: fix enumeration completion The soundwire subsystem uses two completion structures that allow drivers to wait for soundwire device to become enumerated on the bus and initialised by their drivers, respectively. The code implementing the signalling is currently broken as it does not signal all current and future waiters and also uses the wrong reinitialisation function, which can potentially lead to memory corruption if there are still waiters on the queue. Not signalling future waiters specifically breaks sound card probe deferrals as codec drivers can not tell that the soundwire device is already attached when being reprobed. Some codec runtime PM implementations suffer from similar problems as waiting for enumeration during resume can also timeout despite the device already having been enumerated.
CVE-2022-50750 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/panel/panel-sitronix-st7701: Remove panel on DSI attach failure In case mipi_dsi_attach() fails, call drm_panel_remove() to avoid memory leak.
CVE-2023-54066 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: dvb-usb-v2: gl861: Fix null-ptr-deref in gl861_i2c_master_xfer In gl861_i2c_master_xfer, msg is controlled by user. When msg[i].buf is null and msg[i].len is zero, former checks on msg[i].buf would be passed. Malicious data finally reach gl861_i2c_master_xfer. If accessing msg[i].buf[0] without sanity check, null ptr deref would happen. We add check on msg[i].len to prevent crash. Similar commit: commit 0ed554fd769a ("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()")
CVE-2025-68369 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: init run lock for extend inode After setting the inode mode of $Extend to a regular file, executing the truncate system call will enter the do_truncate() routine, causing the run_lock uninitialized error reported by syzbot. Prior to patch 4e8011ffec79, if the inode mode of $Extend was not set to a regular file, the do_truncate() routine would not be entered. Add the run_lock initialization when loading $Extend. syzbot reported: INFO: trying to register non-static key. Call Trace: dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 assign_lock_key+0x133/0x150 kernel/locking/lockdep.c:984 register_lock_class+0x105/0x320 kernel/locking/lockdep.c:1299 __lock_acquire+0x99/0xd20 kernel/locking/lockdep.c:5112 lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868 down_write+0x96/0x1f0 kernel/locking/rwsem.c:1590 ntfs_set_size+0x140/0x200 fs/ntfs3/inode.c:860 ntfs_extend+0x1d9/0x970 fs/ntfs3/file.c:387 ntfs_setattr+0x2e8/0xbe0 fs/ntfs3/file.c:808
CVE-2025-68374 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md: fix rcu protection in md_wakeup_thread We attempted to use RCU to protect the pointer 'thread', but directly passed the value when calling md_wakeup_thread(). This means that the RCU pointer has been acquired before rcu_read_lock(), which renders rcu_read_lock() ineffective and could lead to a use-after-free.
CVE-2025-68728 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: fix uninit memory after failed mi_read in mi_format_new Fix a KMSAN un-init bug found by syzkaller. ntfs_get_bh() expects a buffer from sb_getblk(), that buffer may not be uptodate. We do not bring the buffer uptodate before setting it as uptodate. If the buffer were to not be uptodate, it could mean adding a buffer with un-init data to the mi record. Attempting to load that record will trigger KMSAN. Avoid this by setting the buffer as uptodate, if it’s not already, by overwriting it.
CVE-2022-50716 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: ar5523: Fix use-after-free on ar5523_cmd() timed out syzkaller reported use-after-free with the stack trace like below [1]: [ 38.960489][ C3] ================================================================== [ 38.963216][ C3] BUG: KASAN: use-after-free in ar5523_cmd_tx_cb+0x220/0x240 [ 38.964950][ C3] Read of size 8 at addr ffff888048e03450 by task swapper/3/0 [ 38.966363][ C3] [ 38.967053][ C3] CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.0.0-09039-ga6afa4199d3d-dirty #18 [ 38.968464][ C3] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014 [ 38.969959][ C3] Call Trace: [ 38.970841][ C3] <IRQ> [ 38.971663][ C3] dump_stack_lvl+0xfc/0x174 [ 38.972620][ C3] print_report.cold+0x2c3/0x752 [ 38.973626][ C3] ? ar5523_cmd_tx_cb+0x220/0x240 [ 38.974644][ C3] kasan_report+0xb1/0x1d0 [ 38.975720][ C3] ? ar5523_cmd_tx_cb+0x220/0x240 [ 38.976831][ C3] ar5523_cmd_tx_cb+0x220/0x240 [ 38.978412][ C3] __usb_hcd_giveback_urb+0x353/0x5b0 [ 38.979755][ C3] usb_hcd_giveback_urb+0x385/0x430 [ 38.981266][ C3] dummy_timer+0x140c/0x34e0 [ 38.982925][ C3] ? notifier_call_chain+0xb5/0x1e0 [ 38.984761][ C3] ? rcu_read_lock_sched_held+0xb/0x60 [ 38.986242][ C3] ? lock_release+0x51c/0x790 [ 38.987323][ C3] ? _raw_read_unlock_irqrestore+0x37/0x70 [ 38.988483][ C3] ? __wake_up_common_lock+0xde/0x130 [ 38.989621][ C3] ? reacquire_held_locks+0x4a0/0x4a0 [ 38.990777][ C3] ? lock_acquire+0x472/0x550 [ 38.991919][ C3] ? rcu_read_lock_sched_held+0xb/0x60 [ 38.993138][ C3] ? lock_acquire+0x472/0x550 [ 38.994890][ C3] ? dummy_urb_enqueue+0x860/0x860 [ 38.996266][ C3] ? do_raw_spin_unlock+0x16f/0x230 [ 38.997670][ C3] ? dummy_urb_enqueue+0x860/0x860 [ 38.999116][ C3] call_timer_fn+0x1a0/0x6a0 [ 39.000668][ C3] ? add_timer_on+0x4a0/0x4a0 [ 39.002137][ C3] ? reacquire_held_locks+0x4a0/0x4a0 [ 39.003809][ C3] ? __next_timer_interrupt+0x226/0x2a0 [ 39.005509][ C3] __run_timers.part.0+0x69a/0xac0 [ 39.007025][ C3] ? dummy_urb_enqueue+0x860/0x860 [ 39.008716][ C3] ? call_timer_fn+0x6a0/0x6a0 [ 39.010254][ C3] ? cpuacct_percpu_seq_show+0x10/0x10 [ 39.011795][ C3] ? kvm_sched_clock_read+0x14/0x40 [ 39.013277][ C3] ? sched_clock_cpu+0x69/0x2b0 [ 39.014724][ C3] run_timer_softirq+0xb6/0x1d0 [ 39.016196][ C3] __do_softirq+0x1d2/0x9be [ 39.017616][ C3] __irq_exit_rcu+0xeb/0x190 [ 39.019004][ C3] irq_exit_rcu+0x5/0x20 [ 39.020361][ C3] sysvec_apic_timer_interrupt+0x8f/0xb0 [ 39.021965][ C3] </IRQ> [ 39.023237][ C3] <TASK> In ar5523_probe(), ar5523_host_available() calls ar5523_cmd() as below (there are other functions which finally call ar5523_cmd()): ar5523_probe() -> ar5523_host_available() -> ar5523_cmd_read() -> ar5523_cmd() If ar5523_cmd() timed out, then ar5523_host_available() failed and ar5523_probe() freed the device structure. So, ar5523_cmd_tx_cb() might touch the freed structure. This patch fixes this issue by canceling in-flight tx cmd if submitted urb timed out.
CVE-2022-50726 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix possible use-after-free in async command interface mlx5_cmd_cleanup_async_ctx should return only after all its callback handlers were completed. Before this patch, the below race between mlx5_cmd_cleanup_async_ctx and mlx5_cmd_exec_cb_handler was possible and lead to a use-after-free: 1. mlx5_cmd_cleanup_async_ctx is called while num_inflight is 2 (i.e. elevated by 1, a single inflight callback). 2. mlx5_cmd_cleanup_async_ctx decreases num_inflight to 1. 3. mlx5_cmd_exec_cb_handler is called, decreases num_inflight to 0 and is about to call wake_up(). 4. mlx5_cmd_cleanup_async_ctx calls wait_event, which returns immediately as the condition (num_inflight == 0) holds. 5. mlx5_cmd_cleanup_async_ctx returns. 6. The caller of mlx5_cmd_cleanup_async_ctx frees the mlx5_async_ctx object. 7. mlx5_cmd_exec_cb_handler goes on and calls wake_up() on the freed object. Fix it by syncing using a completion object. Mark it completed when num_inflight reaches 0. Trace: BUG: KASAN: use-after-free in do_raw_spin_lock+0x23d/0x270 Read of size 4 at addr ffff888139cd12f4 by task swapper/5/0 CPU: 5 PID: 0 Comm: swapper/5 Not tainted 6.0.0-rc3_for_upstream_debug_2022_08_30_13_10 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0x57/0x7d print_report.cold+0x2d5/0x684 ? do_raw_spin_lock+0x23d/0x270 kasan_report+0xb1/0x1a0 ? do_raw_spin_lock+0x23d/0x270 do_raw_spin_lock+0x23d/0x270 ? rwlock_bug.part.0+0x90/0x90 ? __delete_object+0xb8/0x100 ? lock_downgrade+0x6e0/0x6e0 _raw_spin_lock_irqsave+0x43/0x60 ? __wake_up_common_lock+0xb9/0x140 __wake_up_common_lock+0xb9/0x140 ? __wake_up_common+0x650/0x650 ? destroy_tis_callback+0x53/0x70 [mlx5_core] ? kasan_set_track+0x21/0x30 ? destroy_tis_callback+0x53/0x70 [mlx5_core] ? kfree+0x1ba/0x520 ? do_raw_spin_unlock+0x54/0x220 mlx5_cmd_exec_cb_handler+0x136/0x1a0 [mlx5_core] ? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core] ? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core] mlx5_cmd_comp_handler+0x65a/0x12b0 [mlx5_core] ? dump_command+0xcc0/0xcc0 [mlx5_core] ? lockdep_hardirqs_on_prepare+0x400/0x400 ? cmd_comp_notifier+0x7e/0xb0 [mlx5_core] cmd_comp_notifier+0x7e/0xb0 [mlx5_core] atomic_notifier_call_chain+0xd7/0x1d0 mlx5_eq_async_int+0x3ce/0xa20 [mlx5_core] atomic_notifier_call_chain+0xd7/0x1d0 ? irq_release+0x140/0x140 [mlx5_core] irq_int_handler+0x19/0x30 [mlx5_core] __handle_irq_event_percpu+0x1f2/0x620 handle_irq_event+0xb2/0x1d0 handle_edge_irq+0x21e/0xb00 __common_interrupt+0x79/0x1a0 common_interrupt+0x78/0xa0 </IRQ> <TASK> asm_common_interrupt+0x22/0x40 RIP: 0010:default_idle+0x42/0x60 Code: c1 83 e0 07 48 c1 e9 03 83 c0 03 0f b6 14 11 38 d0 7c 04 84 d2 75 14 8b 05 eb 47 22 02 85 c0 7e 07 0f 00 2d e0 9f 48 00 fb f4 <c3> 48 c7 c7 80 08 7f 85 e8 d1 d3 3e fe eb de 66 66 2e 0f 1f 84 00 RSP: 0018:ffff888100dbfdf0 EFLAGS: 00000242 RAX: 0000000000000001 RBX: ffffffff84ecbd48 RCX: 1ffffffff0afe110 RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffff835cc9bc RBP: 0000000000000005 R08: 0000000000000001 R09: ffff88881dec4ac3 R10: ffffed1103bd8958 R11: 0000017d0ca571c9 R12: 0000000000000005 R13: ffffffff84f024e0 R14: 0000000000000000 R15: dffffc0000000000 ? default_idle_call+0xcc/0x450 default_idle_call+0xec/0x450 do_idle+0x394/0x450 ? arch_cpu_idle_exit+0x40/0x40 ? do_idle+0x17/0x450 cpu_startup_entry+0x19/0x20 start_secondary+0x221/0x2b0 ? set_cpu_sibling_map+0x2070/0x2070 secondary_startup_64_no_verify+0xcd/0xdb </TASK> Allocated by task 49502: kasan_save_stack+0x1e/0x40 __kasan_kmalloc+0x81/0xa0 kvmalloc_node+0x48/0xe0 mlx5e_bulk_async_init+0x35/0x110 [mlx5_core] mlx5e_tls_priv_tx_list_cleanup+0x84/0x3e0 [mlx5_core] mlx5e_ktls_cleanup_tx+0x38f/0x760 [mlx5_core] mlx5e_cleanup_nic_tx+0xa7/0x100 [mlx5_core] mlx5e_detach_netdev+0x1c ---truncated---
CVE-2023-54051 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: do not allow gso_size to be set to GSO_BY_FRAGS One missing check in virtio_net_hdr_to_skb() allowed syzbot to crash kernels again [1] Do not allow gso_size to be set to GSO_BY_FRAGS (0xffff), because this magic value is used by the kernel. [1] general protection fault, probably for non-canonical address 0xdffffc000000000e: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077] CPU: 0 PID: 5039 Comm: syz-executor401 Not tainted 6.5.0-rc5-next-20230809-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023 RIP: 0010:skb_segment+0x1a52/0x3ef0 net/core/skbuff.c:4500 Code: 00 00 00 e9 ab eb ff ff e8 6b 96 5d f9 48 8b 84 24 00 01 00 00 48 8d 78 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e ea 21 00 00 48 8b 84 24 00 01 RSP: 0018:ffffc90003d3f1c8 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 000000000001fffe RCX: 0000000000000000 RDX: 000000000000000e RSI: ffffffff882a3115 RDI: 0000000000000070 RBP: ffffc90003d3f378 R08: 0000000000000005 R09: 000000000000ffff R10: 000000000000ffff R11: 5ee4a93e456187d6 R12: 000000000001ffc6 R13: dffffc0000000000 R14: 0000000000000008 R15: 000000000000ffff FS: 00005555563f2380(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020020000 CR3: 000000001626d000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> udp6_ufo_fragment+0x9d2/0xd50 net/ipv6/udp_offload.c:109 ipv6_gso_segment+0x5c4/0x17b0 net/ipv6/ip6_offload.c:120 skb_mac_gso_segment+0x292/0x610 net/core/gso.c:53 __skb_gso_segment+0x339/0x710 net/core/gso.c:124 skb_gso_segment include/net/gso.h:83 [inline] validate_xmit_skb+0x3a5/0xf10 net/core/dev.c:3625 __dev_queue_xmit+0x8f0/0x3d60 net/core/dev.c:4329 dev_queue_xmit include/linux/netdevice.h:3082 [inline] packet_xmit+0x257/0x380 net/packet/af_packet.c:276 packet_snd net/packet/af_packet.c:3087 [inline] packet_sendmsg+0x24c7/0x5570 net/packet/af_packet.c:3119 sock_sendmsg_nosec net/socket.c:727 [inline] sock_sendmsg+0xd9/0x180 net/socket.c:750 ____sys_sendmsg+0x6ac/0x940 net/socket.c:2496 ___sys_sendmsg+0x135/0x1d0 net/socket.c:2550 __sys_sendmsg+0x117/0x1e0 net/socket.c:2579 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7ff27cdb34d9
CVE-2023-54060 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommufd: Set end correctly when doing batch carry Even though the test suite covers this it somehow became obscured that this wasn't working. The test iommufd_ioas.mock_domain.access_domain_destory would blow up rarely. end should be set to 1 because this just pushed an item, the carry, to the pfns list. Sometimes the test would blow up with: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] SMP CPU: 5 PID: 584 Comm: iommufd Not tainted 6.5.0-rc1-dirty #1236 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:batch_unpin+0xa2/0x100 [iommufd] Code: 17 48 81 fe ff ff 07 00 77 70 48 8b 15 b7 be 97 e2 48 85 d2 74 14 48 8b 14 fa 48 85 d2 74 0b 40 0f b6 f6 48 c1 e6 04 48 01 f2 <48> 8b 3a 48 c1 e0 06 89 ca 48 89 de 48 83 e7 f0 48 01 c7 e8 96 dc RSP: 0018:ffffc90001677a58 EFLAGS: 00010246 RAX: 00007f7e2646f000 RBX: 0000000000000000 RCX: 0000000000000001 RDX: 0000000000000000 RSI: 00000000fefc4c8d RDI: 0000000000fefc4c RBP: ffffc90001677a80 R08: 0000000000000048 R09: 0000000000000200 R10: 0000000000030b98 R11: ffffffff81f3bb40 R12: 0000000000000001 R13: ffff888101f75800 R14: ffffc90001677ad0 R15: 00000000000001fe FS: 00007f9323679740(0000) GS:ffff8881ba540000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000105ede003 CR4: 00000000003706a0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? show_regs+0x5c/0x70 ? __die+0x1f/0x60 ? page_fault_oops+0x15d/0x440 ? lock_release+0xbc/0x240 ? exc_page_fault+0x4a4/0x970 ? asm_exc_page_fault+0x27/0x30 ? batch_unpin+0xa2/0x100 [iommufd] ? batch_unpin+0xba/0x100 [iommufd] __iopt_area_unfill_domain+0x198/0x430 [iommufd] ? __mutex_lock+0x8c/0xb80 ? __mutex_lock+0x6aa/0xb80 ? xa_erase+0x28/0x30 ? iopt_table_remove_domain+0x162/0x320 [iommufd] ? lock_release+0xbc/0x240 iopt_area_unfill_domain+0xd/0x10 [iommufd] iopt_table_remove_domain+0x195/0x320 [iommufd] iommufd_hw_pagetable_destroy+0xb3/0x110 [iommufd] iommufd_object_destroy_user+0x8e/0xf0 [iommufd] iommufd_device_detach+0xc5/0x140 [iommufd] iommufd_selftest_destroy+0x1f/0x70 [iommufd] iommufd_object_destroy_user+0x8e/0xf0 [iommufd] iommufd_destroy+0x3a/0x50 [iommufd] iommufd_fops_ioctl+0xfb/0x170 [iommufd] __x64_sys_ioctl+0x40d/0x9a0 do_syscall_64+0x3c/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVE-2023-54067 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race when deleting free space root from the dirty cow roots list When deleting the free space tree we are deleting the free space root from the list fs_info->dirty_cowonly_roots without taking the lock that protects it, which is struct btrfs_fs_info::trans_lock. This unsynchronized list manipulation may cause chaos if there's another concurrent manipulation of this list, such as when adding a root to it with ctree.c:add_root_to_dirty_list(). This can result in all sorts of weird failures caused by a race, such as the following crash: [337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI [337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1 [337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.279928] Code: 85 38 06 00 (...) [337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206 [337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000 [337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070 [337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b [337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600 [337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48 [337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000 [337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0 [337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [337571.282874] Call Trace: [337571.283101] <TASK> [337571.283327] ? __die_body+0x1b/0x60 [337571.283570] ? die_addr+0x39/0x60 [337571.283796] ? exc_general_protection+0x22e/0x430 [337571.284022] ? asm_exc_general_protection+0x22/0x30 [337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs] [337571.284803] ? _raw_spin_unlock+0x15/0x30 [337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs] [337571.285305] reset_balance_state+0x152/0x1b0 [btrfs] [337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs] [337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410 [337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs] [337571.286358] ? mod_objcg_state+0xd2/0x360 [337571.286577] ? refill_obj_stock+0xb0/0x160 [337571.286798] ? seq_release+0x25/0x30 [337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0 [337571.287235] ? percpu_counter_add_batch+0x2e/0xa0 [337571.287455] ? __x64_sys_ioctl+0x88/0xc0 [337571.287675] __x64_sys_ioctl+0x88/0xc0 [337571.287901] do_syscall_64+0x38/0x90 [337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc [337571.288352] RIP: 0033:0x7f478aaffe9b So fix this by locking struct btrfs_fs_info::trans_lock before deleting the free space root from that list.
CVE-2022-50758 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: vt6655: fix potential memory leak In function device_init_td0_ring, memory is allocated for member td_info of priv->apTD0Rings[i], with i increasing from 0. In case of allocation failure, the memory is freed in reversed order, with i decreasing to 0. However, the case i=0 is left out and thus memory is leaked. Modify the memory freeing loop to include the case i=0.
CVE-2022-50768 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: smartpqi: Correct device removal for multi-actuator devices Correct device count for multi-actuator drives which can cause kernel panics.