| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Memory corruption while encoding JPEG format. |
| Memory corruption during concurrent buffer access due to modification of the reference count. |
| Memory corruption during concurrent access to server info object due to incorrect reference count update. |
| Memory corruption during concurrent SSR execution due to race condition on the global maps list. |
| Memory corruption while handling multiple IOCTL calls from userspace to operate DMA operations. |
| Microsoft Office OneNote Remote Code Execution Vulnerability |
| Windows USB Generic Parent Driver Remote Code Execution Vulnerability |
| Memory corruption due to use after free in service while trying to access maps by different threads in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Wearables, Snapdragon Wired Infrastructure and Networking |
| An issue was discovered in Bento4 1.6.0-639. There is a bad free in the component AP4_HdlrAtom::~AP4_HdlrAtom() which allows attackers to cause a Denial of Service (DoS) via a crafted input. |
| An issue was discovered in Softing OPC UA C++ SDK 5.66 through 6.x before 6.10. An OPC/UA browse request exceeding the server limit on continuation points may cause a use-after-free error |
| Use after free in Peer Connection in Google Chrome prior to 121.0.6167.139 allowed a remote attacker to potentially exploit stack corruption via a crafted HTML page. (Chromium security severity: High) |
| When NGINX Plus or NGINX OSS are configured to use the HTTP/3 QUIC module, undisclosed requests can cause NGINX worker processes to terminate.
Note: The HTTP/3 QUIC module is not enabled by default and is considered experimental. For more information, refer to Support for QUIC and HTTP/3 https://nginx.org/en/docs/quic.html .
Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated |
| VMware ESXi, Workstation, and Fusion contain a use-after-free vulnerability in the UHCI USB controller. A malicious actor with local administrative privileges on a virtual machine may exploit this issue to execute code as the virtual machine's VMX process running on the host. On ESXi, the exploitation is contained within the VMX sandbox whereas, on Workstation and Fusion, this may lead to code execution on the machine where Workstation or Fusion is installed. |
| Nginx NJS v0.7.2 was discovered to contain a heap-use-after-free bug caused by illegal memory copy in the function njs_json_parse_iterator_call at njs_json.c. |
| curl before 7.86.0 has a double free. If curl is told to use an HTTP proxy for a transfer with a non-HTTP(S) URL, it sets up the connection to the remote server by issuing a CONNECT request to the proxy, and then tunnels the rest of the protocol through. An HTTP proxy might refuse this request (HTTP proxies often only allow outgoing connections to specific port numbers, like 443 for HTTPS) and instead return a non-200 status code to the client. Due to flaws in the error/cleanup handling, this could trigger a double free in curl if one of the following schemes were used in the URL for the transfer: dict, gopher, gophers, ldap, ldaps, rtmp, rtmps, or telnet. The earliest affected version is 7.77.0. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix use-after-free for dynamic ftrace_ops
KASAN reported a use-after-free with ftrace ops [1]. It was found from
vmcore that perf had registered two ops with the same content
successively, both dynamic. After unregistering the second ops, a
use-after-free occurred.
In ftrace_shutdown(), when the second ops is unregistered, the
FTRACE_UPDATE_CALLS command is not set because there is another enabled
ops with the same content. Also, both ops are dynamic and the ftrace
callback function is ftrace_ops_list_func, so the
FTRACE_UPDATE_TRACE_FUNC command will not be set. Eventually the value
of 'command' will be 0 and ftrace_shutdown() will skip the rcu
synchronization.
However, ftrace may be activated. When the ops is released, another CPU
may be accessing the ops. Add the missing synchronization to fix this
problem.
[1]
BUG: KASAN: use-after-free in __ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline]
BUG: KASAN: use-after-free in ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049
Read of size 8 at addr ffff56551965bbc8 by task syz-executor.2/14468
CPU: 1 PID: 14468 Comm: syz-executor.2 Not tainted 5.10.0 #7
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x40c arch/arm64/kernel/stacktrace.c:132
show_stack+0x30/0x40 arch/arm64/kernel/stacktrace.c:196
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x1b4/0x248 lib/dump_stack.c:118
print_address_description.constprop.0+0x28/0x48c mm/kasan/report.c:387
__kasan_report mm/kasan/report.c:547 [inline]
kasan_report+0x118/0x210 mm/kasan/report.c:564
check_memory_region_inline mm/kasan/generic.c:187 [inline]
__asan_load8+0x98/0xc0 mm/kasan/generic.c:253
__ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline]
ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049
ftrace_graph_call+0x0/0x4
__might_sleep+0x8/0x100 include/linux/perf_event.h:1170
__might_fault mm/memory.c:5183 [inline]
__might_fault+0x58/0x70 mm/memory.c:5171
do_strncpy_from_user lib/strncpy_from_user.c:41 [inline]
strncpy_from_user+0x1f4/0x4b0 lib/strncpy_from_user.c:139
getname_flags+0xb0/0x31c fs/namei.c:149
getname+0x2c/0x40 fs/namei.c:209
[...]
Allocated by task 14445:
kasan_save_stack+0x24/0x50 mm/kasan/common.c:48
kasan_set_track mm/kasan/common.c:56 [inline]
__kasan_kmalloc mm/kasan/common.c:479 [inline]
__kasan_kmalloc.constprop.0+0x110/0x13c mm/kasan/common.c:449
kasan_kmalloc+0xc/0x14 mm/kasan/common.c:493
kmem_cache_alloc_trace+0x440/0x924 mm/slub.c:2950
kmalloc include/linux/slab.h:563 [inline]
kzalloc include/linux/slab.h:675 [inline]
perf_event_alloc.part.0+0xb4/0x1350 kernel/events/core.c:11230
perf_event_alloc kernel/events/core.c:11733 [inline]
__do_sys_perf_event_open kernel/events/core.c:11831 [inline]
__se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723
__arm64_sys_perf_event_open+0x6c/0x80 kernel/events/core.c:11723
[...]
Freed by task 14445:
kasan_save_stack+0x24/0x50 mm/kasan/common.c:48
kasan_set_track+0x24/0x34 mm/kasan/common.c:56
kasan_set_free_info+0x20/0x40 mm/kasan/generic.c:358
__kasan_slab_free.part.0+0x11c/0x1b0 mm/kasan/common.c:437
__kasan_slab_free mm/kasan/common.c:445 [inline]
kasan_slab_free+0x2c/0x40 mm/kasan/common.c:446
slab_free_hook mm/slub.c:1569 [inline]
slab_free_freelist_hook mm/slub.c:1608 [inline]
slab_free mm/slub.c:3179 [inline]
kfree+0x12c/0xc10 mm/slub.c:4176
perf_event_alloc.part.0+0xa0c/0x1350 kernel/events/core.c:11434
perf_event_alloc kernel/events/core.c:11733 [inline]
__do_sys_perf_event_open kernel/events/core.c:11831 [inline]
__se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723
[...] |
| A use after free issue was addressed with improved memory management. This issue is fixed in Safari 16.1, iOS 16.1 and iPadOS 16, macOS Ventura 13. Processing maliciously crafted web content may lead to arbitrary code execution. |
| A use after free issue was addressed with improved memory management. This issue is fixed in macOS Big Sur 11.7, macOS Ventura 13, iOS 16, watchOS 9, macOS Monterey 12.6, tvOS 16. An app may be able to execute arbitrary code with kernel privileges. |
| A use after free issue was addressed with improved memory management. This issue is fixed in iOS 15.5 and iPadOS 15.5, macOS Monterey 12.4, tvOS 15.5, watchOS 8.6. Processing maliciously crafted web content may lead to arbitrary code execution. |
| A use after free issue was addressed with improved memory management. This issue is fixed in tvOS 15.5, iOS 15.5 and iPadOS 15.5, watchOS 8.6, macOS Monterey 12.4, Safari 15.5. Processing maliciously crafted web content may lead to arbitrary code execution. |