| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Add a check for valid 'mad_agent' pointer
When unregistering MAD agent, srpt module has a non-null check
for 'mad_agent' pointer before invoking ib_unregister_mad_agent().
This check can pass if 'mad_agent' variable holds an error value.
The 'mad_agent' can have an error value for a short window when
srpt_add_one() and srpt_remove_one() is executed simultaneously.
In srpt module, added a valid pointer check for 'sport->mad_agent'
before unregistering MAD agent.
This issue can hit when RoCE driver unregisters ib_device
Stack Trace:
------------
BUG: kernel NULL pointer dereference, address: 000000000000004d
PGD 145003067 P4D 145003067 PUD 2324fe067 PMD 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
CPU: 10 PID: 4459 Comm: kworker/u80:0 Kdump: loaded Tainted: P
Hardware name: Dell Inc. PowerEdge R640/06NR82, BIOS 2.5.4 01/13/2020
Workqueue: bnxt_re bnxt_re_task [bnxt_re]
RIP: 0010:_raw_spin_lock_irqsave+0x19/0x40
Call Trace:
ib_unregister_mad_agent+0x46/0x2f0 [ib_core]
IPv6: ADDRCONF(NETDEV_CHANGE): bond0: link becomes ready
? __schedule+0x20b/0x560
srpt_unregister_mad_agent+0x93/0xd0 [ib_srpt]
srpt_remove_one+0x20/0x150 [ib_srpt]
remove_client_context+0x88/0xd0 [ib_core]
bond0: (slave p2p1): link status definitely up, 100000 Mbps full duplex
disable_device+0x8a/0x160 [ib_core]
bond0: active interface up!
? kernfs_name_hash+0x12/0x80
(NULL device *): Bonding Info Received: rdev: 000000006c0b8247
__ib_unregister_device+0x42/0xb0 [ib_core]
(NULL device *): Master: mode: 4 num_slaves:2
ib_unregister_device+0x22/0x30 [ib_core]
(NULL device *): Slave: id: 105069936 name:p2p1 link:0 state:0
bnxt_re_stopqps_and_ib_uninit+0x83/0x90 [bnxt_re]
bnxt_re_alloc_lag+0x12e/0x4e0 [bnxt_re] |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: Fix leak of dev tracker
At the stage of direction checks, the netdev reference tracker is
already initialized, but released with wrong *_put() call. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix a possible null-pointer dereference in ni_clear()
In a previous commit c1006bd13146, ni->mi.mrec in ni_write_inode()
could be NULL, and thus a NULL check is added for this variable.
However, in the same call stack, ni->mi.mrec can be also dereferenced
in ni_clear():
ntfs_evict_inode(inode)
ni_write_inode(inode, ...)
ni = ntfs_i(inode);
is_rec_inuse(ni->mi.mrec) -> Add a NULL check by previous commit
ni_clear(ntfs_i(inode))
is_rec_inuse(ni->mi.mrec) -> No check
Thus, a possible null-pointer dereference may exist in ni_clear().
To fix it, a NULL check is added in this function. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: Fix NULL deref caused by blkg_policy_data being installed before init
blk-iocost sometimes causes the following crash:
BUG: kernel NULL pointer dereference, address: 00000000000000e0
...
RIP: 0010:_raw_spin_lock+0x17/0x30
Code: be 01 02 00 00 e8 79 38 39 ff 31 d2 89 d0 5d c3 0f 1f 00 0f 1f 44 00 00 55 48 89 e5 65 ff 05 48 d0 34 7e b9 01 00 00 00 31 c0 <f0> 0f b1 0f 75 02 5d c3 89 c6 e8 ea 04 00 00 5d c3 0f 1f 84 00 00
RSP: 0018:ffffc900023b3d40 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 00000000000000e0 RCX: 0000000000000001
RDX: ffffc900023b3d20 RSI: ffffc900023b3cf0 RDI: 00000000000000e0
RBP: ffffc900023b3d40 R08: ffffc900023b3c10 R09: 0000000000000003
R10: 0000000000000064 R11: 000000000000000a R12: ffff888102337000
R13: fffffffffffffff2 R14: ffff88810af408c8 R15: ffff8881070c3600
FS: 00007faaaf364fc0(0000) GS:ffff88842fdc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000e0 CR3: 00000001097b1000 CR4: 0000000000350ea0
Call Trace:
<TASK>
ioc_weight_write+0x13d/0x410
cgroup_file_write+0x7a/0x130
kernfs_fop_write_iter+0xf5/0x170
vfs_write+0x298/0x370
ksys_write+0x5f/0xb0
__x64_sys_write+0x1b/0x20
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
This happens because iocg->ioc is NULL. The field is initialized by
ioc_pd_init() and never cleared. The NULL deref is caused by
blkcg_activate_policy() installing blkg_policy_data before initializing it.
blkcg_activate_policy() was doing the following:
1. Allocate pd's for all existing blkg's and install them in blkg->pd[].
2. Initialize all pd's.
3. Online all pd's.
blkcg_activate_policy() only grabs the queue_lock and may release and
re-acquire the lock as allocation may need to sleep. ioc_weight_write()
grabs blkcg->lock and iterates all its blkg's. The two can race and if
ioc_weight_write() runs during #1 or between #1 and #2, it can encounter a
pd which is not initialized yet, leading to crash.
The crash can be reproduced with the following script:
#!/bin/bash
echo +io > /sys/fs/cgroup/cgroup.subtree_control
systemd-run --unit touch-sda --scope dd if=/dev/sda of=/dev/null bs=1M count=1 iflag=direct
echo 100 > /sys/fs/cgroup/system.slice/io.weight
bash -c "echo '8:0 enable=1' > /sys/fs/cgroup/io.cost.qos" &
sleep .2
echo 100 > /sys/fs/cgroup/system.slice/io.weight
with the following patch applied:
> diff --git a/block/blk-cgroup.c b/block/blk-cgroup.c
> index fc49be622e05..38d671d5e10c 100644
> --- a/block/blk-cgroup.c
> +++ b/block/blk-cgroup.c
> @@ -1553,6 +1553,12 @@ int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
> pd->online = false;
> }
>
> + if (system_state == SYSTEM_RUNNING) {
> + spin_unlock_irq(&q->queue_lock);
> + ssleep(1);
> + spin_lock_irq(&q->queue_lock);
> + }
> +
> /* all allocated, init in the same order */
> if (pol->pd_init_fn)
> list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
I don't see a reason why all pd's should be allocated, initialized and
onlined together. The only ordering requirement is that parent blkgs to be
initialized and onlined before children, which is guaranteed from the
walking order. Let's fix the bug by allocating, initializing and onlining pd
for each blkg and holding blkcg->lock over initialization and onlining. This
ensures that an installed blkg is always fully initialized and onlined
removing the the race window. |
| In the Linux kernel, the following vulnerability has been resolved:
media: usb: siano: Fix use after free bugs caused by do_submit_urb
There are UAF bugs caused by do_submit_urb(). One of the KASan reports
is shown below:
[ 36.403605] BUG: KASAN: use-after-free in worker_thread+0x4a2/0x890
[ 36.406105] Read of size 8 at addr ffff8880059600e8 by task kworker/0:2/49
[ 36.408316]
[ 36.408867] CPU: 0 PID: 49 Comm: kworker/0:2 Not tainted 6.2.0-rc3-15798-g5a41237ad1d4-dir8
[ 36.411696] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g15584
[ 36.416157] Workqueue: 0x0 (events)
[ 36.417654] Call Trace:
[ 36.418546] <TASK>
[ 36.419320] dump_stack_lvl+0x96/0xd0
[ 36.420522] print_address_description+0x75/0x350
[ 36.421992] print_report+0x11b/0x250
[ 36.423174] ? _raw_spin_lock_irqsave+0x87/0xd0
[ 36.424806] ? __virt_addr_valid+0xcf/0x170
[ 36.426069] ? worker_thread+0x4a2/0x890
[ 36.427355] kasan_report+0x131/0x160
[ 36.428556] ? worker_thread+0x4a2/0x890
[ 36.430053] worker_thread+0x4a2/0x890
[ 36.431297] ? worker_clr_flags+0x90/0x90
[ 36.432479] kthread+0x166/0x190
[ 36.433493] ? kthread_blkcg+0x50/0x50
[ 36.434669] ret_from_fork+0x22/0x30
[ 36.435923] </TASK>
[ 36.436684]
[ 36.437215] Allocated by task 24:
[ 36.438289] kasan_set_track+0x50/0x80
[ 36.439436] __kasan_kmalloc+0x89/0xa0
[ 36.440566] smsusb_probe+0x374/0xc90
[ 36.441920] usb_probe_interface+0x2d1/0x4c0
[ 36.443253] really_probe+0x1d5/0x580
[ 36.444539] __driver_probe_device+0xe3/0x130
[ 36.446085] driver_probe_device+0x49/0x220
[ 36.447423] __device_attach_driver+0x19e/0x1b0
[ 36.448931] bus_for_each_drv+0xcb/0x110
[ 36.450217] __device_attach+0x132/0x1f0
[ 36.451470] bus_probe_device+0x59/0xf0
[ 36.452563] device_add+0x4ec/0x7b0
[ 36.453830] usb_set_configuration+0xc63/0xe10
[ 36.455230] usb_generic_driver_probe+0x3b/0x80
[ 36.456166] printk: console [ttyGS0] disabled
[ 36.456569] usb_probe_device+0x90/0x110
[ 36.459523] really_probe+0x1d5/0x580
[ 36.461027] __driver_probe_device+0xe3/0x130
[ 36.462465] driver_probe_device+0x49/0x220
[ 36.463847] __device_attach_driver+0x19e/0x1b0
[ 36.465229] bus_for_each_drv+0xcb/0x110
[ 36.466466] __device_attach+0x132/0x1f0
[ 36.467799] bus_probe_device+0x59/0xf0
[ 36.469010] device_add+0x4ec/0x7b0
[ 36.470125] usb_new_device+0x863/0xa00
[ 36.471374] hub_event+0x18c7/0x2220
[ 36.472746] process_one_work+0x34c/0x5b0
[ 36.474041] worker_thread+0x4b7/0x890
[ 36.475216] kthread+0x166/0x190
[ 36.476267] ret_from_fork+0x22/0x30
[ 36.477447]
[ 36.478160] Freed by task 24:
[ 36.479239] kasan_set_track+0x50/0x80
[ 36.480512] kasan_save_free_info+0x2b/0x40
[ 36.481808] ____kasan_slab_free+0x122/0x1a0
[ 36.483173] __kmem_cache_free+0xc4/0x200
[ 36.484563] smsusb_term_device+0xcd/0xf0
[ 36.485896] smsusb_probe+0xc85/0xc90
[ 36.486976] usb_probe_interface+0x2d1/0x4c0
[ 36.488303] really_probe+0x1d5/0x580
[ 36.489498] __driver_probe_device+0xe3/0x130
[ 36.491140] driver_probe_device+0x49/0x220
[ 36.492475] __device_attach_driver+0x19e/0x1b0
[ 36.493988] bus_for_each_drv+0xcb/0x110
[ 36.495171] __device_attach+0x132/0x1f0
[ 36.496617] bus_probe_device+0x59/0xf0
[ 36.497875] device_add+0x4ec/0x7b0
[ 36.498972] usb_set_configuration+0xc63/0xe10
[ 36.500264] usb_generic_driver_probe+0x3b/0x80
[ 36.501740] usb_probe_device+0x90/0x110
[ 36.503084] really_probe+0x1d5/0x580
[ 36.504241] __driver_probe_device+0xe3/0x130
[ 36.505548] driver_probe_device+0x49/0x220
[ 36.506766] __device_attach_driver+0x19e/0x1b0
[ 36.508368] bus_for_each_drv+0xcb/0x110
[ 36.509646] __device_attach+0x132/0x1f0
[ 36.510911] bus_probe_device+0x59/0xf0
[ 36.512103] device_add+0x4ec/0x7b0
[ 36.513215] usb_new_device+0x863/0xa00
[ 36.514736] hub_event+0x18c7/0x2220
[ 36.516130] process_one_work+
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: double free xprt_ctxt while still in use
When an RPC request is deferred, the rq_xprt_ctxt pointer is moved out
of the svc_rqst into the svc_deferred_req.
When the deferred request is revisited, the pointer is copied into
the new svc_rqst - and also remains in the svc_deferred_req.
In the (rare?) case that the request is deferred a second time, the old
svc_deferred_req is reused - it still has all the correct content.
However in that case the rq_xprt_ctxt pointer is NOT cleared so that
when xpo_release_xprt is called, the ctxt is freed (UDP) or possible
added to a free list (RDMA).
When the deferred request is revisited for a second time, it will
reference this ctxt which may be invalid, and the free the object a
second time which is likely to oops.
So change svc_defer() to *always* clear rq_xprt_ctxt, and assert that
the value is now stored in the svc_deferred_req. |
| In the Linux kernel, the following vulnerability has been resolved:
debugobjects: Don't wake up kswapd from fill_pool()
syzbot is reporting a lockdep warning in fill_pool() because the allocation
from debugobjects is using GFP_ATOMIC, which is (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)
and therefore tries to wake up kswapd, which acquires kswapd_wait::lock.
Since fill_pool() might be called with arbitrary locks held, fill_pool()
should not assume that acquiring kswapd_wait::lock is safe.
Use __GFP_HIGH instead and remove __GFP_NORETRY as it is pointless for
!__GFP_DIRECT_RECLAIM allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: Rework lppaca_shared_proc() to avoid DEBUG_PREEMPT
lppaca_shared_proc() takes a pointer to the lppaca which is typically
accessed through get_lppaca(). With DEBUG_PREEMPT enabled, this leads
to checking if preemption is enabled, for example:
BUG: using smp_processor_id() in preemptible [00000000] code: grep/10693
caller is lparcfg_data+0x408/0x19a0
CPU: 4 PID: 10693 Comm: grep Not tainted 6.5.0-rc3 #2
Call Trace:
dump_stack_lvl+0x154/0x200 (unreliable)
check_preemption_disabled+0x214/0x220
lparcfg_data+0x408/0x19a0
...
This isn't actually a problem however, as it does not matter which
lppaca is accessed, the shared proc state will be the same.
vcpudispatch_stats_procfs_init() already works around this by disabling
preemption, but the lparcfg code does not, erroring any time
/proc/powerpc/lparcfg is accessed with DEBUG_PREEMPT enabled.
Instead of disabling preemption on the caller side, rework
lppaca_shared_proc() to not take a pointer and instead directly access
the lppaca, bypassing any potential preemption checks.
[mpe: Rework to avoid needing a definition in paca.h and lppaca.h] |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-usb: m920x: Fix a potential memory leak in m920x_i2c_xfer()
'read' is freed when it is known to be NULL, but not when a read error
occurs.
Revert the logic to avoid a small leak, should a m920x_read() call fail. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix an uninit variable access bug in __ip6_make_skb()
Syzbot reported a bug as following:
=====================================================
BUG: KMSAN: uninit-value in arch_atomic64_inc arch/x86/include/asm/atomic64_64.h:88 [inline]
BUG: KMSAN: uninit-value in arch_atomic_long_inc include/linux/atomic/atomic-long.h:161 [inline]
BUG: KMSAN: uninit-value in atomic_long_inc include/linux/atomic/atomic-instrumented.h:1429 [inline]
BUG: KMSAN: uninit-value in __ip6_make_skb+0x2f37/0x30f0 net/ipv6/ip6_output.c:1956
arch_atomic64_inc arch/x86/include/asm/atomic64_64.h:88 [inline]
arch_atomic_long_inc include/linux/atomic/atomic-long.h:161 [inline]
atomic_long_inc include/linux/atomic/atomic-instrumented.h:1429 [inline]
__ip6_make_skb+0x2f37/0x30f0 net/ipv6/ip6_output.c:1956
ip6_finish_skb include/net/ipv6.h:1122 [inline]
ip6_push_pending_frames+0x10e/0x550 net/ipv6/ip6_output.c:1987
rawv6_push_pending_frames+0xb12/0xb90 net/ipv6/raw.c:579
rawv6_sendmsg+0x297e/0x2e60 net/ipv6/raw.c:922
inet_sendmsg+0x101/0x180 net/ipv4/af_inet.c:827
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
____sys_sendmsg+0xa8e/0xe70 net/socket.c:2476
___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2530
__sys_sendmsg net/socket.c:2559 [inline]
__do_sys_sendmsg net/socket.c:2568 [inline]
__se_sys_sendmsg net/socket.c:2566 [inline]
__x64_sys_sendmsg+0x367/0x540 net/socket.c:2566
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook mm/slab.h:766 [inline]
slab_alloc_node mm/slub.c:3452 [inline]
__kmem_cache_alloc_node+0x71f/0xce0 mm/slub.c:3491
__do_kmalloc_node mm/slab_common.c:967 [inline]
__kmalloc_node_track_caller+0x114/0x3b0 mm/slab_common.c:988
kmalloc_reserve net/core/skbuff.c:492 [inline]
__alloc_skb+0x3af/0x8f0 net/core/skbuff.c:565
alloc_skb include/linux/skbuff.h:1270 [inline]
__ip6_append_data+0x51c1/0x6bb0 net/ipv6/ip6_output.c:1684
ip6_append_data+0x411/0x580 net/ipv6/ip6_output.c:1854
rawv6_sendmsg+0x2882/0x2e60 net/ipv6/raw.c:915
inet_sendmsg+0x101/0x180 net/ipv4/af_inet.c:827
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
____sys_sendmsg+0xa8e/0xe70 net/socket.c:2476
___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2530
__sys_sendmsg net/socket.c:2559 [inline]
__do_sys_sendmsg net/socket.c:2568 [inline]
__se_sys_sendmsg net/socket.c:2566 [inline]
__x64_sys_sendmsg+0x367/0x540 net/socket.c:2566
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
It is because icmp6hdr does not in skb linear region under the scenario
of SOCK_RAW socket. Access icmp6_hdr(skb)->icmp6_type directly will
trigger the uninit variable access bug.
Use a local variable icmp6_type to carry the correct value in different
scenarios. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/sysv: Null check to prevent null-ptr-deref bug
sb_getblk(inode->i_sb, parent) return a null ptr and taking lock on
that leads to the null-ptr-deref bug. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/kms/nv50-: init hpd_irq_lock for PIOR DP
Fixes OOPS on boards with ANX9805 DP encoders. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Don't clone flow post action attributes second time
The code already clones post action attributes in
mlx5e_clone_flow_attr_for_post_act(). Creating another copy in
mlx5e_tc_post_act_add() is a erroneous leftover from original
implementation. Instead, assign handle->attribute to post_attr provided by
the caller. Note that cloning the attribute second time is not just
wasteful but also causes issues like second copy not being properly updated
in neigh update code which leads to following use-after-free:
Feb 21 09:02:00 c-237-177-40-045 kernel: BUG: KASAN: use-after-free in mlx5_cmd_set_fte+0x200d/0x24c0 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_report+0xbb/0x1a0
Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_save_stack+0x1e/0x40
Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_set_track+0x21/0x30
Feb 21 09:02:00 c-237-177-40-045 kernel: __kasan_kmalloc+0x7a/0x90
Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_save_stack+0x1e/0x40
Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_set_track+0x21/0x30
Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_save_free_info+0x2a/0x40
Feb 21 09:02:00 c-237-177-40-045 kernel: ____kasan_slab_free+0x11a/0x1b0
Feb 21 09:02:00 c-237-177-40-045 kernel: page dumped because: kasan: bad access detected
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_core 0000:08:00.0: mlx5_cmd_out_err:803:(pid 8833): SET_FLOW_TABLE_ENTRY(0x936) op_mod(0x0) failed, status bad resource state(0x9), syndrome (0xf2ff71), err(-22)
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_core 0000:08:00.0 enp8s0f0: Failed to add post action rule
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_core 0000:08:00.0: mlx5e_tc_encap_flows_add:190:(pid 8833): Failed to update flow post acts, -22
Feb 21 09:02:00 c-237-177-40-045 kernel: Call Trace:
Feb 21 09:02:00 c-237-177-40-045 kernel: <TASK>
Feb 21 09:02:00 c-237-177-40-045 kernel: dump_stack_lvl+0x57/0x7d
Feb 21 09:02:00 c-237-177-40-045 kernel: print_report+0x170/0x471
Feb 21 09:02:00 c-237-177-40-045 kernel: ? mlx5_cmd_set_fte+0x200d/0x24c0 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_report+0xbb/0x1a0
Feb 21 09:02:00 c-237-177-40-045 kernel: ? mlx5_cmd_set_fte+0x200d/0x24c0 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_cmd_set_fte+0x200d/0x24c0 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: ? __module_address.part.0+0x62/0x200
Feb 21 09:02:00 c-237-177-40-045 kernel: ? mlx5_cmd_stub_create_flow_table+0xd0/0xd0 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: ? __raw_spin_lock_init+0x3b/0x110
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_cmd_create_fte+0x80/0xb0 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: add_rule_fg+0xe80/0x19c0 [mlx5_core]
--
Feb 21 09:02:00 c-237-177-40-045 kernel: Allocated by task 13476:
Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_save_stack+0x1e/0x40
Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_set_track+0x21/0x30
Feb 21 09:02:00 c-237-177-40-045 kernel: __kasan_kmalloc+0x7a/0x90
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_packet_reformat_alloc+0x7b/0x230 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_tc_tun_create_header_ipv4+0x977/0xf10 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_attach_encap+0x15b4/0x1e10 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: post_process_attr+0x305/0xa30 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_tc_add_fdb_flow+0x4c0/0xcf0 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: __mlx5e_add_fdb_flow+0x7cf/0xe90 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_configure_flower+0xcaa/0x4b90 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_rep_setup_tc_cls_flower+0x99/0x1b0 [mlx5_core]
Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_rep_setup_tc_cb+0x133/0x1e0 [mlx5_core]
--
Feb 21 09:02:00 c-237-177-40-045 kernel: Freed by task 8833:
Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_save_s
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Add missing gfx11 MQD manager callbacks
mqd_stride function was introduced in commit 2f77b9a242a2
("drm/amdkfd: Update MQD management on multi XCC setup")
but not assigned for gfx11. Fixes a NULL dereference in debugfs. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix lost destroy smbd connection when MR allocate failed
If the MR allocate failed, the smb direct connection info is NULL,
then smbd_destroy() will directly return, then the connection info
will be leaked.
Let's set the smb direct connection info to the server before call
smbd_destroy(). |
| In the Linux kernel, the following vulnerability has been resolved:
soundwire: bus: Fix unbalanced pm_runtime_put() causing usage count underflow
This reverts commit
443a98e649b4 ("soundwire: bus: use pm_runtime_resume_and_get()")
Change calls to pm_runtime_resume_and_get() back to pm_runtime_get_sync().
This fixes a usage count underrun caused by doing a pm_runtime_put() even
though pm_runtime_resume_and_get() returned an error.
The three affected functions ignore -EACCES error from trying to get
pm_runtime, and carry on, including a put at the end of the function.
But pm_runtime_resume_and_get() does not increment the usage count if it
returns an error. So in the -EACCES case you must not call
pm_runtime_put().
The documentation for pm_runtime_get_sync() says:
"Consider using pm_runtime_resume_and_get() ... as this is likely to
result in cleaner code."
In this case I don't think it results in cleaner code because the
pm_runtime_put() at the end of the function would have to be conditional on
the return value from pm_runtime_resume_and_get() at the top of the
function.
pm_runtime_get_sync() doesn't have this problem because it always
increments the count, so always needs a put. The code can just flow through
and do the pm_runtime_put() unconditionally. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix potential oops in cifs_oplock_break
With deferred close we can have closes that race with lease breaks,
and so with the current checks for whether to send the lease response,
oplock_response(), this can mean that an unmount (kill_sb) can occur
just before we were checking if the tcon->ses is valid. See below:
[Fri Aug 4 04:12:50 2023] RIP: 0010:cifs_oplock_break+0x1f7/0x5b0 [cifs]
[Fri Aug 4 04:12:50 2023] Code: 7d a8 48 8b 7d c0 c0 e9 02 48 89 45 b8 41 89 cf e8 3e f5 ff ff 4c 89 f7 41 83 e7 01 e8 82 b3 03 f2 49 8b 45 50 48 85 c0 74 5e <48> 83 78 60 00 74 57 45 84 ff 75 52 48 8b 43 98 48 83 eb 68 48 39
[Fri Aug 4 04:12:50 2023] RSP: 0018:ffffb30607ddbdf8 EFLAGS: 00010206
[Fri Aug 4 04:12:50 2023] RAX: 632d223d32612022 RBX: ffff97136944b1e0 RCX: 0000000080100009
[Fri Aug 4 04:12:50 2023] RDX: 0000000000000001 RSI: 0000000080100009 RDI: ffff97136944b188
[Fri Aug 4 04:12:50 2023] RBP: ffffb30607ddbe58 R08: 0000000000000001 R09: ffffffffc08e0900
[Fri Aug 4 04:12:50 2023] R10: 0000000000000001 R11: 000000000000000f R12: ffff97136944b138
[Fri Aug 4 04:12:50 2023] R13: ffff97149147c000 R14: ffff97136944b188 R15: 0000000000000000
[Fri Aug 4 04:12:50 2023] FS: 0000000000000000(0000) GS:ffff9714f7c00000(0000) knlGS:0000000000000000
[Fri Aug 4 04:12:50 2023] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[Fri Aug 4 04:12:50 2023] CR2: 00007fd8de9c7590 CR3: 000000011228e000 CR4: 0000000000350ef0
[Fri Aug 4 04:12:50 2023] Call Trace:
[Fri Aug 4 04:12:50 2023] <TASK>
[Fri Aug 4 04:12:50 2023] process_one_work+0x225/0x3d0
[Fri Aug 4 04:12:50 2023] worker_thread+0x4d/0x3e0
[Fri Aug 4 04:12:50 2023] ? process_one_work+0x3d0/0x3d0
[Fri Aug 4 04:12:50 2023] kthread+0x12a/0x150
[Fri Aug 4 04:12:50 2023] ? set_kthread_struct+0x50/0x50
[Fri Aug 4 04:12:50 2023] ret_from_fork+0x22/0x30
[Fri Aug 4 04:12:50 2023] </TASK>
To fix this change the ordering of the checks before sending the oplock_response
to first check if the openFileList is empty. |
| In the Linux kernel, the following vulnerability has been resolved:
net: macb: fix a memory corruption in extended buffer descriptor mode
For quite some time we were chasing a bug which looked like a sudden
permanent failure of networking and mmc on some of our devices.
The bug was very sensitive to any software changes and even more to
any kernel debug options.
Finally we got a setup where the problem was reproducible with
CONFIG_DMA_API_DEBUG=y and it revealed the issue with the rx dma:
[ 16.992082] ------------[ cut here ]------------
[ 16.996779] DMA-API: macb ff0b0000.ethernet: device driver tries to free DMA memory it has not allocated [device address=0x0000000875e3e244] [size=1536 bytes]
[ 17.011049] WARNING: CPU: 0 PID: 85 at kernel/dma/debug.c:1011 check_unmap+0x6a0/0x900
[ 17.018977] Modules linked in: xxxxx
[ 17.038823] CPU: 0 PID: 85 Comm: irq/55-8000f000 Not tainted 5.4.0 #28
[ 17.045345] Hardware name: xxxxx
[ 17.049528] pstate: 60000005 (nZCv daif -PAN -UAO)
[ 17.054322] pc : check_unmap+0x6a0/0x900
[ 17.058243] lr : check_unmap+0x6a0/0x900
[ 17.062163] sp : ffffffc010003c40
[ 17.065470] x29: ffffffc010003c40 x28: 000000004000c03c
[ 17.070783] x27: ffffffc010da7048 x26: ffffff8878e38800
[ 17.076095] x25: ffffff8879d22810 x24: ffffffc010003cc8
[ 17.081407] x23: 0000000000000000 x22: ffffffc010a08750
[ 17.086719] x21: ffffff8878e3c7c0 x20: ffffffc010acb000
[ 17.092032] x19: 0000000875e3e244 x18: 0000000000000010
[ 17.097343] x17: 0000000000000000 x16: 0000000000000000
[ 17.102647] x15: ffffff8879e4a988 x14: 0720072007200720
[ 17.107959] x13: 0720072007200720 x12: 0720072007200720
[ 17.113261] x11: 0720072007200720 x10: 0720072007200720
[ 17.118565] x9 : 0720072007200720 x8 : 000000000000022d
[ 17.123869] x7 : 0000000000000015 x6 : 0000000000000098
[ 17.129173] x5 : 0000000000000000 x4 : 0000000000000000
[ 17.134475] x3 : 00000000ffffffff x2 : ffffffc010a1d370
[ 17.139778] x1 : b420c9d75d27bb00 x0 : 0000000000000000
[ 17.145082] Call trace:
[ 17.147524] check_unmap+0x6a0/0x900
[ 17.151091] debug_dma_unmap_page+0x88/0x90
[ 17.155266] gem_rx+0x114/0x2f0
[ 17.158396] macb_poll+0x58/0x100
[ 17.161705] net_rx_action+0x118/0x400
[ 17.165445] __do_softirq+0x138/0x36c
[ 17.169100] irq_exit+0x98/0xc0
[ 17.172234] __handle_domain_irq+0x64/0xc0
[ 17.176320] gic_handle_irq+0x5c/0xc0
[ 17.179974] el1_irq+0xb8/0x140
[ 17.183109] xiic_process+0x5c/0xe30
[ 17.186677] irq_thread_fn+0x28/0x90
[ 17.190244] irq_thread+0x208/0x2a0
[ 17.193724] kthread+0x130/0x140
[ 17.196945] ret_from_fork+0x10/0x20
[ 17.200510] ---[ end trace 7240980785f81d6f ]---
[ 237.021490] ------------[ cut here ]------------
[ 237.026129] DMA-API: exceeded 7 overlapping mappings of cacheline 0x0000000021d79e7b
[ 237.033886] WARNING: CPU: 0 PID: 0 at kernel/dma/debug.c:499 add_dma_entry+0x214/0x240
[ 237.041802] Modules linked in: xxxxx
[ 237.061637] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 5.4.0 #28
[ 237.068941] Hardware name: xxxxx
[ 237.073116] pstate: 80000085 (Nzcv daIf -PAN -UAO)
[ 237.077900] pc : add_dma_entry+0x214/0x240
[ 237.081986] lr : add_dma_entry+0x214/0x240
[ 237.086072] sp : ffffffc010003c30
[ 237.089379] x29: ffffffc010003c30 x28: ffffff8878a0be00
[ 237.094683] x27: 0000000000000180 x26: ffffff8878e387c0
[ 237.099987] x25: 0000000000000002 x24: 0000000000000000
[ 237.105290] x23: 000000000000003b x22: ffffffc010a0fa00
[ 237.110594] x21: 0000000021d79e7b x20: ffffffc010abe600
[ 237.115897] x19: 00000000ffffffef x18: 0000000000000010
[ 237.121201] x17: 0000000000000000 x16: 0000000000000000
[ 237.126504] x15: ffffffc010a0fdc8 x14: 0720072007200720
[ 237.131807] x13: 0720072007200720 x12: 0720072007200720
[ 237.137111] x11: 0720072007200720 x10: 0720072007200720
[ 237.142415] x9 : 0720072007200720 x8 : 0000000000000259
[ 237.147718] x7 : 0000000000000001 x6 : 0000000000000000
[ 237.15302
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
sh: dma: Fix DMA channel offset calculation
Various SoCs of the SH3, SH4 and SH4A family, which use this driver,
feature a differing number of DMA channels, which can be distributed
between up to two DMAC modules. The existing implementation fails to
correctly accommodate for all those variations, resulting in wrong
channel offset calculations and leading to kernel panics.
Rewrite dma_base_addr() in order to properly calculate channel offsets
in a DMAC module. Fix dmaor_read_reg() and dmaor_write_reg(), so that
the correct DMAC module base is selected for the DMAOR register. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: Don't leak a resource on eviction error
On eviction errors other than -EMULTIHOP we were leaking a resource.
Fix.
v2:
- Avoid yet another goto (Andi Shyti) |