| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Due to lack of server-side input validation, attackers can inject malicious JavaScript code into users personal spaces of the web portal. |
| Unauthenticated attackers can add devices of other users to their scenes (or arbitrary scenes of other arbitrary users). |
| An attacker can export other users' plant information. |
| In the Linux kernel, the following vulnerability has been resolved:
udmabuf: Set the DMA mask for the udmabuf device (v2)
If the DMA mask is not set explicitly, the following warning occurs
when the userspace tries to access the dma-buf via the CPU as
reported by syzbot here:
WARNING: CPU: 1 PID: 3595 at kernel/dma/mapping.c:188
__dma_map_sg_attrs+0x181/0x1f0 kernel/dma/mapping.c:188
Modules linked in:
CPU: 0 PID: 3595 Comm: syz-executor249 Not tainted
5.17.0-rc2-syzkaller-00316-g0457e5153e0e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
RIP: 0010:__dma_map_sg_attrs+0x181/0x1f0 kernel/dma/mapping.c:188
Code: 00 00 00 00 00 fc ff df 48 c1 e8 03 80 3c 10 00 75 71 4c 8b 3d c0
83 b5 0d e9 db fe ff ff e8 b6 0f 13 00 0f 0b e8 af 0f 13 00 <0f> 0b 45
31 e4 e9 54 ff ff ff e8 a0 0f 13 00 49 8d 7f 50 48 b8 00
RSP: 0018:ffffc90002a07d68 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: ffff88807e25e2c0 RSI: ffffffff81649e91 RDI: ffff88801b848408
RBP: ffff88801b848000 R08: 0000000000000002 R09: ffff88801d86c74f
R10: ffffffff81649d72 R11: 0000000000000001 R12: 0000000000000002
R13: ffff88801d86c680 R14: 0000000000000001 R15: 0000000000000000
FS: 0000555556e30300(0000) GS:ffff8880b9d00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000200000cc CR3: 000000001d74a000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
dma_map_sgtable+0x70/0xf0 kernel/dma/mapping.c:264
get_sg_table.isra.0+0xe0/0x160 drivers/dma-buf/udmabuf.c:72
begin_cpu_udmabuf+0x130/0x1d0 drivers/dma-buf/udmabuf.c:126
dma_buf_begin_cpu_access+0xfd/0x1d0 drivers/dma-buf/dma-buf.c:1164
dma_buf_ioctl+0x259/0x2b0 drivers/dma-buf/dma-buf.c:363
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f62fcf530f9
Code: 28 c3 e8 2a 14 00 00 66 2e 0f 1f 84 00 00 00 00 00 48 89 f8 48 89
f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01
f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffe3edab9b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f62fcf530f9
RDX: 0000000020000200 RSI: 0000000040086200 RDI: 0000000000000006
RBP: 00007f62fcf170e0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f62fcf17170
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
v2: Dont't forget to deregister if DMA mask setup fails. |
| An unauthenticated attacker can hijack other users' devices and potentially control them. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: steam: Prevent NULL pointer dereference in steam_{recv,send}_report
It is possible for a malicious device to forgo submitting a Feature
Report. The HID Steam driver presently makes no prevision for this
and de-references the 'struct hid_report' pointer obtained from the
HID devices without first checking its validity. Let's change that. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Don't use tnum_range on array range checking for poke descriptors
Hsin-Wei reported a KASAN splat triggered by their BPF runtime fuzzer which
is based on a customized syzkaller:
BUG: KASAN: slab-out-of-bounds in bpf_int_jit_compile+0x1257/0x13f0
Read of size 8 at addr ffff888004e90b58 by task syz-executor.0/1489
CPU: 1 PID: 1489 Comm: syz-executor.0 Not tainted 5.19.0 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x9c/0xc9
print_address_description.constprop.0+0x1f/0x1f0
? bpf_int_jit_compile+0x1257/0x13f0
kasan_report.cold+0xeb/0x197
? kvmalloc_node+0x170/0x200
? bpf_int_jit_compile+0x1257/0x13f0
bpf_int_jit_compile+0x1257/0x13f0
? arch_prepare_bpf_dispatcher+0xd0/0xd0
? rcu_read_lock_sched_held+0x43/0x70
bpf_prog_select_runtime+0x3e8/0x640
? bpf_obj_name_cpy+0x149/0x1b0
bpf_prog_load+0x102f/0x2220
? __bpf_prog_put.constprop.0+0x220/0x220
? find_held_lock+0x2c/0x110
? __might_fault+0xd6/0x180
? lock_downgrade+0x6e0/0x6e0
? lock_is_held_type+0xa6/0x120
? __might_fault+0x147/0x180
__sys_bpf+0x137b/0x6070
? bpf_perf_link_attach+0x530/0x530
? new_sync_read+0x600/0x600
? __fget_files+0x255/0x450
? lock_downgrade+0x6e0/0x6e0
? fput+0x30/0x1a0
? ksys_write+0x1a8/0x260
__x64_sys_bpf+0x7a/0xc0
? syscall_enter_from_user_mode+0x21/0x70
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f917c4e2c2d
The problem here is that a range of tnum_range(0, map->max_entries - 1) has
limited ability to represent the concrete tight range with the tnum as the
set of resulting states from value + mask can result in a superset of the
actual intended range, and as such a tnum_in(range, reg->var_off) check may
yield true when it shouldn't, for example tnum_range(0, 2) would result in
00XX -> v = 0000, m = 0011 such that the intended set of {0, 1, 2} is here
represented by a less precise superset of {0, 1, 2, 3}. As the register is
known const scalar, really just use the concrete reg->var_off.value for the
upper index check. |
| Unauthenticated attackers can rename arbitrary devices of arbitrary users (i.e., EV chargers). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: storvsc: Remove WQ_MEM_RECLAIM from storvsc_error_wq
storvsc_error_wq workqueue should not be marked as WQ_MEM_RECLAIM as it
doesn't need to make forward progress under memory pressure. Marking this
workqueue as WQ_MEM_RECLAIM may cause deadlock while flushing a
non-WQ_MEM_RECLAIM workqueue. In the current state it causes the following
warning:
[ 14.506347] ------------[ cut here ]------------
[ 14.506354] workqueue: WQ_MEM_RECLAIM storvsc_error_wq_0:storvsc_remove_lun is flushing !WQ_MEM_RECLAIM events_freezable_power_:disk_events_workfn
[ 14.506360] WARNING: CPU: 0 PID: 8 at <-snip->kernel/workqueue.c:2623 check_flush_dependency+0xb5/0x130
[ 14.506390] CPU: 0 PID: 8 Comm: kworker/u4:0 Not tainted 5.4.0-1086-azure #91~18.04.1-Ubuntu
[ 14.506391] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022
[ 14.506393] Workqueue: storvsc_error_wq_0 storvsc_remove_lun
[ 14.506395] RIP: 0010:check_flush_dependency+0xb5/0x130
<-snip->
[ 14.506408] Call Trace:
[ 14.506412] __flush_work+0xf1/0x1c0
[ 14.506414] __cancel_work_timer+0x12f/0x1b0
[ 14.506417] ? kernfs_put+0xf0/0x190
[ 14.506418] cancel_delayed_work_sync+0x13/0x20
[ 14.506420] disk_block_events+0x78/0x80
[ 14.506421] del_gendisk+0x3d/0x2f0
[ 14.506423] sr_remove+0x28/0x70
[ 14.506427] device_release_driver_internal+0xef/0x1c0
[ 14.506428] device_release_driver+0x12/0x20
[ 14.506429] bus_remove_device+0xe1/0x150
[ 14.506431] device_del+0x167/0x380
[ 14.506432] __scsi_remove_device+0x11d/0x150
[ 14.506433] scsi_remove_device+0x26/0x40
[ 14.506434] storvsc_remove_lun+0x40/0x60
[ 14.506436] process_one_work+0x209/0x400
[ 14.506437] worker_thread+0x34/0x400
[ 14.506439] kthread+0x121/0x140
[ 14.506440] ? process_one_work+0x400/0x400
[ 14.506441] ? kthread_park+0x90/0x90
[ 14.506443] ret_from_fork+0x35/0x40
[ 14.506445] ---[ end trace 2d9633159fdc6ee7 ]--- |
| Unauthenticated attackers can rename "rooms" of arbitrary users. |
| An unauthenticated attacker can delete any user's "rooms" by knowing the user's and room IDs. |
| In the Linux kernel, the following vulnerability has been resolved:
md: call __md_stop_writes in md_stop
From the link [1], we can see raid1d was running even after the path
raid_dtr -> md_stop -> __md_stop.
Let's stop write first in destructor to align with normal md-raid to
fix the KASAN issue.
[1]. https://lore.kernel.org/linux-raid/CAPhsuW5gc4AakdGNdF8ubpezAuDLFOYUO_sfMZcec6hQFm8nhg@mail.gmail.com/T/#m7f12bf90481c02c6d2da68c64aeed4779b7df74a |
| In the Linux kernel, the following vulnerability has been resolved:
xen/privcmd: fix error exit of privcmd_ioctl_dm_op()
The error exit of privcmd_ioctl_dm_op() is calling unlock_pages()
potentially with pages being NULL, leading to a NULL dereference.
Additionally lock_pages() doesn't check for pin_user_pages_fast()
having been completely successful, resulting in potentially not
locking all pages into memory. This could result in sporadic failures
when using the related memory in user mode.
Fix all of that by calling unlock_pages() always with the real number
of pinned pages, which will be zero in case pages being NULL, and by
checking the number of pages pinned by pin_user_pages_fast() matching
the expected number of pages. |
| An unauthenticated attacker can obtain EV charger version and firmware upgrading history by knowing the charger ID. |
| Unauthenticated attackers can query an API endpoint and get device details. |
| An unauthenticated attackers can obtain a list of smart devices by knowing a valid username through an unprotected API. |
| In the Linux kernel, the following vulnerability has been resolved:
s390: fix double free of GS and RI CBs on fork() failure
The pointers for guarded storage and runtime instrumentation control
blocks are stored in the thread_struct of the associated task. These
pointers are initially copied on fork() via arch_dup_task_struct()
and then cleared via copy_thread() before fork() returns. If fork()
happens to fail after the initial task dup and before copy_thread(),
the newly allocated task and associated thread_struct memory are
freed via free_task() -> arch_release_task_struct(). This results in
a double free of the guarded storage and runtime info structs
because the fields in the failed task still refer to memory
associated with the source task.
This problem can manifest as a BUG_ON() in set_freepointer() (with
CONFIG_SLAB_FREELIST_HARDENED enabled) or KASAN splat (if enabled)
when running trinity syscall fuzz tests on s390x. To avoid this
problem, clear the associated pointer fields in
arch_dup_task_struct() immediately after the new task is copied.
Note that the RI flag is still cleared in copy_thread() because it
resides in thread stack memory and that is where stack info is
copied. |
| Unauthenticated attackers can retrieve full list of users associated with arbitrary accounts. |
| Unauthenticated attackers can retrieve serial number of smart meters associated to a specific user account. |
| An attacker can upload an arbitrary file instead of a plant image. |