| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
raid10: cleanup memleak at raid10_make_request
If raid10_read_request or raid10_write_request registers a new
request and the REQ_NOWAIT flag is set, the code does not
free the malloc from the mempool.
unreferenced object 0xffff8884802c3200 (size 192):
comm "fio", pid 9197, jiffies 4298078271
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 88 41 02 00 00 00 00 00 .........A......
08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc c1a049a2):
__kmalloc+0x2bb/0x450
mempool_alloc+0x11b/0x320
raid10_make_request+0x19e/0x650 [raid10]
md_handle_request+0x3b3/0x9e0
__submit_bio+0x394/0x560
__submit_bio_noacct+0x145/0x530
submit_bio_noacct_nocheck+0x682/0x830
__blkdev_direct_IO_async+0x4dc/0x6b0
blkdev_read_iter+0x1e5/0x3b0
__io_read+0x230/0x1110
io_read+0x13/0x30
io_issue_sqe+0x134/0x1180
io_submit_sqes+0x48c/0xe90
__do_sys_io_uring_enter+0x574/0x8b0
do_syscall_64+0x5c/0xe0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
V4: changing backing tree to see if CKI tests will pass.
The patch code has not changed between any versions. |
| When building nested elements using xml.dom.minidom methods such as appendChild() that have a dependency on _clear_id_cache() the algorithm is quadratic. Availability can be impacted when building excessively nested documents. |
| In the Linux kernel, the following vulnerability has been resolved:
netlink: Fix wraparounds of sk->sk_rmem_alloc.
Netlink has this pattern in some places
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
, which has the same problem fixed by commit 5a465a0da13e ("udp:
Fix multiple wraparounds of sk->sk_rmem_alloc.").
For example, if we set INT_MAX to SO_RCVBUFFORCE, the condition
is always false as the two operands are of int.
Then, a single socket can eat as many skb as possible until OOM
happens, and we can see multiple wraparounds of sk->sk_rmem_alloc.
Let's fix it by using atomic_add_return() and comparing the two
variables as unsigned int.
Before:
[root@fedora ~]# ss -f netlink
Recv-Q Send-Q Local Address:Port Peer Address:Port
-1668710080 0 rtnl:nl_wraparound/293 *
After:
[root@fedora ~]# ss -f netlink
Recv-Q Send-Q Local Address:Port Peer Address:Port
2147483072 0 rtnl:nl_wraparound/290 *
^
`--- INT_MAX - 576 |
| Tornado is a Python web framework and asynchronous networking library. Versions 6.5.2 and below use an inefficient algorithm when parsing parameters for HTTP header values, potentially causing a DoS. The _parseparam function in httputil.py is used to parse specific HTTP header values, such as those in multipart/form-data and repeatedly calls string.count() within a nested loop while processing quoted semicolons. If an attacker sends a request with a large number of maliciously crafted parameters in a Content-Disposition header, the server's CPU usage increases quadratically (O(n²)) during parsing. Due to Tornado's single event loop architecture, a single malicious request can cause the entire server to become unresponsive for an extended period. This issue is fixed in version 6.5.3. |
| Tornado is a Python web framework and asynchronous networking library. In versions 6.5.2 and below, a single maliciously crafted HTTP request can block the server's event loop for an extended period, caused by the HTTPHeaders.add method. The function accumulates values using string concatenation when the same header name is repeated, causing a Denial of Service (DoS). Due to Python string immutability, each concatenation copies the entire string, resulting in O(n²) time complexity. The severity can vary from high if max_header_size has been increased from its default, to low if it has its default value of 64KB. This issue is fixed in version 6.5.3. |
| Improper Resource Shutdown or Release vulnerability in ASR Falcon_Linux、Kestrel、Lapwing_Linux on Linux (traffic_stat modules) allows Resource Leak Exposure. This vulnerability is associated with program files traffic_stat/traffic_service/traffic_service.C.
This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536. |
| Improper Resource Shutdown or Release vulnerability in ASR180x 、ASR190x in router
components
allows Resource Leak Exposure. This vulnerability is associated with program files router/phonebook/pb.c.
This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536. |
| Resource leak vulnerability in ASR180x in router allows Resource Leak Exposure.
This vulnerability is associated with program files router/sms/sms.c.
This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536. |
| Improper Resource Shutdown or Release vulnerability in ASR Falcon_Linux、Kestrel、Lapwing_Linux on Linux (con_mgr
components) allows Resource Leak Exposure. This vulnerability is associated with program files con_mgr/dialer_task.C.
This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536. |
| Resource leak vulnerability in ASR180x、ASR190x in con_mgr allows Resource Leak Exposure.This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536. |
| Improper Resource Shutdown or Release vulnerability in ASR180x 、ASR190x in router modules allows Resource Leak Exposure. This vulnerability is associated with program files router/phonebook/pbwork-queue.C.
This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536. |
| JWCrypto implements JWK, JWS, and JWE specifications using python-cryptography. Prior to version 1.5.6, an attacker can cause a denial of service attack by passing in a malicious JWE Token with a high compression ratio. When the server processes this token, it will consume a lot of memory and processing time. Version 1.5.6 fixes this vulnerability by limiting the maximum token length. |
| In the Linux kernel, the following vulnerability has been resolved:
swiotlb: fix info leak with DMA_FROM_DEVICE
The problem I'm addressing was discovered by the LTP test covering
cve-2018-1000204.
A short description of what happens follows:
1) The test case issues a command code 00 (TEST UNIT READY) via the SG_IO
interface with: dxfer_len == 524288, dxdfer_dir == SG_DXFER_FROM_DEV
and a corresponding dxferp. The peculiar thing about this is that TUR
is not reading from the device.
2) In sg_start_req() the invocation of blk_rq_map_user() effectively
bounces the user-space buffer. As if the device was to transfer into
it. Since commit a45b599ad808 ("scsi: sg: allocate with __GFP_ZERO in
sg_build_indirect()") we make sure this first bounce buffer is
allocated with GFP_ZERO.
3) For the rest of the story we keep ignoring that we have a TUR, so the
device won't touch the buffer we prepare as if the we had a
DMA_FROM_DEVICE type of situation. My setup uses a virtio-scsi device
and the buffer allocated by SG is mapped by the function
virtqueue_add_split() which uses DMA_FROM_DEVICE for the "in" sgs (here
scatter-gather and not scsi generics). This mapping involves bouncing
via the swiotlb (we need swiotlb to do virtio in protected guest like
s390 Secure Execution, or AMD SEV).
4) When the SCSI TUR is done, we first copy back the content of the second
(that is swiotlb) bounce buffer (which most likely contains some
previous IO data), to the first bounce buffer, which contains all
zeros. Then we copy back the content of the first bounce buffer to
the user-space buffer.
5) The test case detects that the buffer, which it zero-initialized,
ain't all zeros and fails.
One can argue that this is an swiotlb problem, because without swiotlb
we leak all zeros, and the swiotlb should be transparent in a sense that
it does not affect the outcome (if all other participants are well
behaved).
Copying the content of the original buffer into the swiotlb buffer is
the only way I can think of to make swiotlb transparent in such
scenarios. So let's do just that if in doubt, but allow the driver
to tell us that the whole mapped buffer is going to be overwritten,
in which case we can preserve the old behavior and avoid the performance
impact of the extra bounce. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: always initialize cqe.result
The spec doesn't mandate that the first two double words (aka results)
for the command queue entry need to be set to 0 when they are not
used (not specified). Though, the target implemention returns 0 for TCP
and FC but not for RDMA.
Let's make RDMA behave the same and thus explicitly initializing the
result field. This prevents leaking any data from the stack. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gma500: Fix WARN_ON(lock->magic != lock) error
psb_gem_unpin() calls dma_resv_lock() but the underlying ww_mutex
gets destroyed by drm_gem_object_release() move the
drm_gem_object_release() call in psb_gem_free_object() to after
the unpin to fix the below warning:
[ 79.693962] ------------[ cut here ]------------
[ 79.693992] DEBUG_LOCKS_WARN_ON(lock->magic != lock)
[ 79.694015] WARNING: CPU: 0 PID: 240 at kernel/locking/mutex.c:582 __ww_mutex_lock.constprop.0+0x569/0xfb0
[ 79.694052] Modules linked in: rfcomm snd_seq_dummy snd_hrtimer qrtr bnep ath9k ath9k_common ath9k_hw snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio snd_hda_codec_hdmi snd_hda_intel ath3k snd_intel_dspcfg mac80211 snd_intel_sdw_acpi btusb snd_hda_codec btrtl btbcm btintel btmtk bluetooth at24 snd_hda_core snd_hwdep uvcvideo snd_seq libarc4 videobuf2_vmalloc ath videobuf2_memops videobuf2_v4l2 videobuf2_common snd_seq_device videodev acer_wmi intel_powerclamp coretemp mc snd_pcm joydev sparse_keymap ecdh_generic pcspkr wmi_bmof cfg80211 i2c_i801 i2c_smbus snd_timer snd r8169 rfkill lpc_ich soundcore acpi_cpufreq zram rtsx_pci_sdmmc mmc_core serio_raw rtsx_pci gma500_gfx(E) video wmi ip6_tables ip_tables i2c_dev fuse
[ 79.694436] CPU: 0 PID: 240 Comm: plymouthd Tainted: G W E 6.0.0-rc3+ #490
[ 79.694457] Hardware name: Packard Bell dot s/SJE01_CT, BIOS V1.10 07/23/2013
[ 79.694469] RIP: 0010:__ww_mutex_lock.constprop.0+0x569/0xfb0
[ 79.694496] Code: ff 85 c0 0f 84 15 fb ff ff 8b 05 ca 3c 11 01 85 c0 0f 85 07 fb ff ff 48 c7 c6 30 cb 84 aa 48 c7 c7 a3 e1 82 aa e8 ac 29 f8 ff <0f> 0b e9 ed fa ff ff e8 5b 83 8a ff 85 c0 74 10 44 8b 0d 98 3c 11
[ 79.694513] RSP: 0018:ffffad1dc048bbe0 EFLAGS: 00010282
[ 79.694623] RAX: 0000000000000028 RBX: 0000000000000000 RCX: 0000000000000000
[ 79.694636] RDX: 0000000000000001 RSI: ffffffffaa8b0ffc RDI: 00000000ffffffff
[ 79.694650] RBP: ffffad1dc048bc80 R08: 0000000000000000 R09: ffffad1dc048ba90
[ 79.694662] R10: 0000000000000003 R11: ffffffffaad62fe8 R12: ffff9ff302103138
[ 79.694675] R13: ffff9ff306ec8000 R14: ffff9ff307779078 R15: ffff9ff3014c0270
[ 79.694690] FS: 00007ff1cccf1740(0000) GS:ffff9ff3bc200000(0000) knlGS:0000000000000000
[ 79.694705] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 79.694719] CR2: 0000559ecbcb4420 CR3: 0000000013210000 CR4: 00000000000006f0
[ 79.694734] Call Trace:
[ 79.694749] <TASK>
[ 79.694761] ? __schedule+0x47f/0x1670
[ 79.694796] ? psb_gem_unpin+0x27/0x1a0 [gma500_gfx]
[ 79.694830] ? lock_is_held_type+0xe3/0x140
[ 79.694864] ? ww_mutex_lock+0x38/0xa0
[ 79.694885] ? __cond_resched+0x1c/0x30
[ 79.694902] ww_mutex_lock+0x38/0xa0
[ 79.694925] psb_gem_unpin+0x27/0x1a0 [gma500_gfx]
[ 79.694964] psb_gem_unpin+0x199/0x1a0 [gma500_gfx]
[ 79.694996] drm_gem_object_release_handle+0x50/0x60
[ 79.695020] ? drm_gem_object_handle_put_unlocked+0xf0/0xf0
[ 79.695042] idr_for_each+0x4b/0xb0
[ 79.695066] ? _raw_spin_unlock_irqrestore+0x30/0x60
[ 79.695095] drm_gem_release+0x1c/0x30
[ 79.695118] drm_file_free.part.0+0x1ea/0x260
[ 79.695150] drm_release+0x6a/0x120
[ 79.695175] __fput+0x9f/0x260
[ 79.695203] task_work_run+0x59/0xa0
[ 79.695227] do_exit+0x387/0xbe0
[ 79.695250] ? seqcount_lockdep_reader_access.constprop.0+0x82/0x90
[ 79.695275] ? lockdep_hardirqs_on+0x7d/0x100
[ 79.695304] do_group_exit+0x33/0xb0
[ 79.695331] __x64_sys_exit_group+0x14/0x20
[ 79.695353] do_syscall_64+0x58/0x80
[ 79.695376] ? up_read+0x17/0x20
[ 79.695401] ? lock_is_held_type+0xe3/0x140
[ 79.695429] ? asm_exc_page_fault+0x22/0x30
[ 79.695450] ? lockdep_hardirqs_on+0x7d/0x100
[ 79.695473] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 79.695493] RIP: 0033:0x7ff1ccefe3f1
[ 79.695516] Code: Unable to access opcode bytes at RIP 0x7ff1ccefe3c7.
[ 79.695607] RSP: 002b:00007ffed4413378 EFLAGS:
---truncated--- |
| Avahi is a system which facilitates service discovery on a local network via the mDNS/DNS-SD protocol suite. In versions up to and including 0.9-rc2, the simple protocol server ignores the documented client limit and accepts unlimited connections, allowing for easy local DoS. Although `CLIENTS_MAX` is defined, `server_work()` unconditionally `accept()`s and `client_new()` always appends the new client and increments `n_clients`. There is no check against the limit. When client cannot be accepted as a result of maximal socket number of avahi-daemon, it logs unconditionally error per each connection. Unprivileged local users can exhaust daemon memory and file descriptors, causing a denial of service system-wide for mDNS/DNS-SD. Exhausting local file descriptors causes increased system load caused by logging errors of each of request. Overloading prevents glibc calls using nss-mdns plugins to resolve `*.local.` names and link-local addresses. As of time of publication, no known patched versions are available, but a candidate fix is available in pull request 808, and some workarounds are available. Simple clients are offered for nss-mdns package functionality. It is not possible to disable the unix socket `/run/avahi-daemon/socket`, but resolution requests received via DBus are not affected directly. Tools avahi-resolve, avahi-resolve-address and avahi-resolve-host-name are not affected, they use DBus interface. It is possible to change permissions of unix socket after avahi-daemon is started. But avahi-daemon does not provide any configuration for it. Additional access restrictions like SELinux can also prevent unwanted tools to access the socket and keep resolution working for trusted users. |
| MyHoard is a daemon for creating, managing and restoring MySQL backups. Starting in version 1.0.1 and prior to version 1.3.0, in some cases, myhoard logs the whole backup info, including the encryption key. Version 1.3.0 fixes the issue. As a workaround, direct logs into /dev/null. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: sun8i-ce-cipher - fix error handling in sun8i_ce_cipher_prepare()
Fix two DMA cleanup issues on the error path in sun8i_ce_cipher_prepare():
1] If dma_map_sg() fails for areq->dst, the device driver would try to free
DMA memory it has not allocated in the first place. To fix this, on the
"theend_sgs" error path, call dma unmap only if the corresponding dma
map was successful.
2] If the dma_map_single() call for the IV fails, the device driver would
try to free an invalid DMA memory address on the "theend_iv" path:
------------[ cut here ]------------
DMA-API: sun8i-ce 1904000.crypto: device driver tries to free an invalid DMA memory address
WARNING: CPU: 2 PID: 69 at kernel/dma/debug.c:968 check_unmap+0x123c/0x1b90
Modules linked in: skcipher_example(O+)
CPU: 2 UID: 0 PID: 69 Comm: 1904000.crypto- Tainted: G O 6.15.0-rc3+ #24 PREEMPT
Tainted: [O]=OOT_MODULE
Hardware name: OrangePi Zero2 (DT)
pc : check_unmap+0x123c/0x1b90
lr : check_unmap+0x123c/0x1b90
...
Call trace:
check_unmap+0x123c/0x1b90 (P)
debug_dma_unmap_page+0xac/0xc0
dma_unmap_page_attrs+0x1f4/0x5fc
sun8i_ce_cipher_do_one+0x1bd4/0x1f40
crypto_pump_work+0x334/0x6e0
kthread_worker_fn+0x21c/0x438
kthread+0x374/0x664
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
To fix this, check for !dma_mapping_error() before calling
dma_unmap_single() on the "theend_iv" path. |
| Inefficient algorithm complexity in mjson in HAProxy allows remote attackers to cause a denial of service via specially crafted JSON requests. |
| In libexpat through 2.7.3, a crafted file with an approximate size of 2 MiB can lead to dozens of seconds of processing time. |