Search Results (5795 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-38444 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-22 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: raid10: cleanup memleak at raid10_make_request If raid10_read_request or raid10_write_request registers a new request and the REQ_NOWAIT flag is set, the code does not free the malloc from the mempool. unreferenced object 0xffff8884802c3200 (size 192): comm "fio", pid 9197, jiffies 4298078271 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 88 41 02 00 00 00 00 00 .........A...... 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc c1a049a2): __kmalloc+0x2bb/0x450 mempool_alloc+0x11b/0x320 raid10_make_request+0x19e/0x650 [raid10] md_handle_request+0x3b3/0x9e0 __submit_bio+0x394/0x560 __submit_bio_noacct+0x145/0x530 submit_bio_noacct_nocheck+0x682/0x830 __blkdev_direct_IO_async+0x4dc/0x6b0 blkdev_read_iter+0x1e5/0x3b0 __io_read+0x230/0x1110 io_read+0x13/0x30 io_issue_sqe+0x134/0x1180 io_submit_sqes+0x48c/0xe90 __do_sys_io_uring_enter+0x574/0x8b0 do_syscall_64+0x5c/0xe0 entry_SYSCALL_64_after_hwframe+0x76/0x7e V4: changing backing tree to see if CKI tests will pass. The patch code has not changed between any versions.
CVE-2025-12084 1 Python 2 Cpython, Python 2025-12-22 5.3 Medium
When building nested elements using xml.dom.minidom methods such as appendChild() that have a dependency on _clear_id_cache() the algorithm is quadratic. Availability can be impacted when building excessively nested documents.
CVE-2025-38465 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-22 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netlink: Fix wraparounds of sk->sk_rmem_alloc. Netlink has this pattern in some places if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) atomic_add(skb->truesize, &sk->sk_rmem_alloc); , which has the same problem fixed by commit 5a465a0da13e ("udp: Fix multiple wraparounds of sk->sk_rmem_alloc."). For example, if we set INT_MAX to SO_RCVBUFFORCE, the condition is always false as the two operands are of int. Then, a single socket can eat as many skb as possible until OOM happens, and we can see multiple wraparounds of sk->sk_rmem_alloc. Let's fix it by using atomic_add_return() and comparing the two variables as unsigned int. Before: [root@fedora ~]# ss -f netlink Recv-Q Send-Q Local Address:Port Peer Address:Port -1668710080 0 rtnl:nl_wraparound/293 * After: [root@fedora ~]# ss -f netlink Recv-Q Send-Q Local Address:Port Peer Address:Port 2147483072 0 rtnl:nl_wraparound/290 * ^ `--- INT_MAX - 576
CVE-2025-67726 1 Tornadoweb 1 Tornado 2025-12-22 7.5 High
Tornado is a Python web framework and asynchronous networking library. Versions 6.5.2 and below use an inefficient algorithm when parsing parameters for HTTP header values, potentially causing a DoS. The _parseparam function in httputil.py is used to parse specific HTTP header values, such as those in multipart/form-data and repeatedly calls string.count() within a nested loop while processing quoted semicolons. If an attacker sends a request with a large number of maliciously crafted parameters in a Content-Disposition header, the server's CPU usage increases quadratically (O(n²)) during parsing. Due to Tornado's single event loop architecture, a single malicious request can cause the entire server to become unresponsive for an extended period. This issue is fixed in version 6.5.3.
CVE-2025-67725 1 Tornadoweb 1 Tornado 2025-12-22 7.5 High
Tornado is a Python web framework and asynchronous networking library. In versions 6.5.2 and below, a single maliciously crafted HTTP request can block the server's event loop for an extended period, caused by the HTTPHeaders.add method. The function accumulates values using string concatenation when the same header name is repeated, causing a Denial of Service (DoS). Due to Python string immutability, each concatenation copies the entire string, resulting in O(n²) time complexity. The severity can vary from high if max_header_size has been increased from its default, to low if it has its default value of 64KB. This issue is fixed in version 6.5.3.
CVE-2025-49491 1 Asrmicro 7 Asr1803, Asr1806, Asr1901 and 4 more 2025-12-22 5.4 Medium
Improper Resource Shutdown or Release vulnerability in ASR Falcon_Linux、Kestrel、Lapwing_Linux on Linux (traffic_stat modules) allows Resource Leak Exposure. This vulnerability is associated with program files traffic_stat/traffic_service/traffic_service.C. This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536.
CVE-2025-49488 1 Asrmicro 7 Asr1803, Asr1806, Asr1901 and 4 more 2025-12-22 5.4 Medium
Improper Resource Shutdown or Release vulnerability in ASR180x 、ASR190x in router components allows Resource Leak Exposure. This vulnerability is associated with program files router/phonebook/pb.c. This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536.
CVE-2025-49490 1 Asrmicro 7 Asr1803, Asr1806, Asr1901 and 4 more 2025-12-22 5.4 Medium
Resource leak vulnerability in ASR180x in router allows Resource Leak Exposure. This vulnerability is associated with program files router/sms/sms.c. This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536.
CVE-2025-49489 1 Asrmicro 7 Asr1803, Asr1806, Asr1901 and 4 more 2025-12-22 5.4 Medium
Improper Resource Shutdown or Release vulnerability in ASR Falcon_Linux、Kestrel、Lapwing_Linux on Linux (con_mgr components) allows Resource Leak Exposure. This vulnerability is associated with program files con_mgr/dialer_task.C. This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536.
CVE-2025-5072 1 Asrmicro 7 Asr1803, Asr1806, Asr1901 and 4 more 2025-12-22 5.4 Medium
Resource leak vulnerability in ASR180x、ASR190x in con_mgr allows Resource Leak Exposure.This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536.
CVE-2025-49481 1 Asrmicro 7 Asr1803, Asr1806, Asr1901 and 4 more 2025-12-22 5.4 Medium
Improper Resource Shutdown or Release vulnerability in ASR180x 、ASR190x in router modules allows Resource Leak Exposure. This vulnerability is associated with program files router/phonebook/pbwork-queue.C. This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536.
CVE-2024-28102 3 Debian, Latchset, Redhat 4 Debian Linux, Jwcrypto, Ansible Automation Platform and 1 more 2025-12-22 6.8 Medium
JWCrypto implements JWK, JWS, and JWE specifications using python-cryptography. Prior to version 1.5.6, an attacker can cause a denial of service attack by passing in a malicious JWE Token with a high compression ratio. When the server processes this token, it will consume a lot of memory and processing time. Version 1.5.6 fixes this vulnerability by limiting the maximum token length.
CVE-2022-48853 1 Linux 1 Linux Kernel 2025-12-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: swiotlb: fix info leak with DMA_FROM_DEVICE The problem I'm addressing was discovered by the LTP test covering cve-2018-1000204. A short description of what happens follows: 1) The test case issues a command code 00 (TEST UNIT READY) via the SG_IO interface with: dxfer_len == 524288, dxdfer_dir == SG_DXFER_FROM_DEV and a corresponding dxferp. The peculiar thing about this is that TUR is not reading from the device. 2) In sg_start_req() the invocation of blk_rq_map_user() effectively bounces the user-space buffer. As if the device was to transfer into it. Since commit a45b599ad808 ("scsi: sg: allocate with __GFP_ZERO in sg_build_indirect()") we make sure this first bounce buffer is allocated with GFP_ZERO. 3) For the rest of the story we keep ignoring that we have a TUR, so the device won't touch the buffer we prepare as if the we had a DMA_FROM_DEVICE type of situation. My setup uses a virtio-scsi device and the buffer allocated by SG is mapped by the function virtqueue_add_split() which uses DMA_FROM_DEVICE for the "in" sgs (here scatter-gather and not scsi generics). This mapping involves bouncing via the swiotlb (we need swiotlb to do virtio in protected guest like s390 Secure Execution, or AMD SEV). 4) When the SCSI TUR is done, we first copy back the content of the second (that is swiotlb) bounce buffer (which most likely contains some previous IO data), to the first bounce buffer, which contains all zeros. Then we copy back the content of the first bounce buffer to the user-space buffer. 5) The test case detects that the buffer, which it zero-initialized, ain't all zeros and fails. One can argue that this is an swiotlb problem, because without swiotlb we leak all zeros, and the swiotlb should be transparent in a sense that it does not affect the outcome (if all other participants are well behaved). Copying the content of the original buffer into the swiotlb buffer is the only way I can think of to make swiotlb transparent in such scenarios. So let's do just that if in doubt, but allow the driver to tell us that the whole mapped buffer is going to be overwritten, in which case we can preserve the old behavior and avoid the performance impact of the extra bounce.
CVE-2024-41079 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-20 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nvmet: always initialize cqe.result The spec doesn't mandate that the first two double words (aka results) for the command queue entry need to be set to 0 when they are not used (not specified). Though, the target implemention returns 0 for TCP and FC but not for RDMA. Let's make RDMA behave the same and thus explicitly initializing the result field. This prevents leaking any data from the stack.
CVE-2022-48633 1 Linux 1 Linux Kernel 2025-12-20 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/gma500: Fix WARN_ON(lock->magic != lock) error psb_gem_unpin() calls dma_resv_lock() but the underlying ww_mutex gets destroyed by drm_gem_object_release() move the drm_gem_object_release() call in psb_gem_free_object() to after the unpin to fix the below warning: [ 79.693962] ------------[ cut here ]------------ [ 79.693992] DEBUG_LOCKS_WARN_ON(lock->magic != lock) [ 79.694015] WARNING: CPU: 0 PID: 240 at kernel/locking/mutex.c:582 __ww_mutex_lock.constprop.0+0x569/0xfb0 [ 79.694052] Modules linked in: rfcomm snd_seq_dummy snd_hrtimer qrtr bnep ath9k ath9k_common ath9k_hw snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio snd_hda_codec_hdmi snd_hda_intel ath3k snd_intel_dspcfg mac80211 snd_intel_sdw_acpi btusb snd_hda_codec btrtl btbcm btintel btmtk bluetooth at24 snd_hda_core snd_hwdep uvcvideo snd_seq libarc4 videobuf2_vmalloc ath videobuf2_memops videobuf2_v4l2 videobuf2_common snd_seq_device videodev acer_wmi intel_powerclamp coretemp mc snd_pcm joydev sparse_keymap ecdh_generic pcspkr wmi_bmof cfg80211 i2c_i801 i2c_smbus snd_timer snd r8169 rfkill lpc_ich soundcore acpi_cpufreq zram rtsx_pci_sdmmc mmc_core serio_raw rtsx_pci gma500_gfx(E) video wmi ip6_tables ip_tables i2c_dev fuse [ 79.694436] CPU: 0 PID: 240 Comm: plymouthd Tainted: G W E 6.0.0-rc3+ #490 [ 79.694457] Hardware name: Packard Bell dot s/SJE01_CT, BIOS V1.10 07/23/2013 [ 79.694469] RIP: 0010:__ww_mutex_lock.constprop.0+0x569/0xfb0 [ 79.694496] Code: ff 85 c0 0f 84 15 fb ff ff 8b 05 ca 3c 11 01 85 c0 0f 85 07 fb ff ff 48 c7 c6 30 cb 84 aa 48 c7 c7 a3 e1 82 aa e8 ac 29 f8 ff <0f> 0b e9 ed fa ff ff e8 5b 83 8a ff 85 c0 74 10 44 8b 0d 98 3c 11 [ 79.694513] RSP: 0018:ffffad1dc048bbe0 EFLAGS: 00010282 [ 79.694623] RAX: 0000000000000028 RBX: 0000000000000000 RCX: 0000000000000000 [ 79.694636] RDX: 0000000000000001 RSI: ffffffffaa8b0ffc RDI: 00000000ffffffff [ 79.694650] RBP: ffffad1dc048bc80 R08: 0000000000000000 R09: ffffad1dc048ba90 [ 79.694662] R10: 0000000000000003 R11: ffffffffaad62fe8 R12: ffff9ff302103138 [ 79.694675] R13: ffff9ff306ec8000 R14: ffff9ff307779078 R15: ffff9ff3014c0270 [ 79.694690] FS: 00007ff1cccf1740(0000) GS:ffff9ff3bc200000(0000) knlGS:0000000000000000 [ 79.694705] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 79.694719] CR2: 0000559ecbcb4420 CR3: 0000000013210000 CR4: 00000000000006f0 [ 79.694734] Call Trace: [ 79.694749] <TASK> [ 79.694761] ? __schedule+0x47f/0x1670 [ 79.694796] ? psb_gem_unpin+0x27/0x1a0 [gma500_gfx] [ 79.694830] ? lock_is_held_type+0xe3/0x140 [ 79.694864] ? ww_mutex_lock+0x38/0xa0 [ 79.694885] ? __cond_resched+0x1c/0x30 [ 79.694902] ww_mutex_lock+0x38/0xa0 [ 79.694925] psb_gem_unpin+0x27/0x1a0 [gma500_gfx] [ 79.694964] psb_gem_unpin+0x199/0x1a0 [gma500_gfx] [ 79.694996] drm_gem_object_release_handle+0x50/0x60 [ 79.695020] ? drm_gem_object_handle_put_unlocked+0xf0/0xf0 [ 79.695042] idr_for_each+0x4b/0xb0 [ 79.695066] ? _raw_spin_unlock_irqrestore+0x30/0x60 [ 79.695095] drm_gem_release+0x1c/0x30 [ 79.695118] drm_file_free.part.0+0x1ea/0x260 [ 79.695150] drm_release+0x6a/0x120 [ 79.695175] __fput+0x9f/0x260 [ 79.695203] task_work_run+0x59/0xa0 [ 79.695227] do_exit+0x387/0xbe0 [ 79.695250] ? seqcount_lockdep_reader_access.constprop.0+0x82/0x90 [ 79.695275] ? lockdep_hardirqs_on+0x7d/0x100 [ 79.695304] do_group_exit+0x33/0xb0 [ 79.695331] __x64_sys_exit_group+0x14/0x20 [ 79.695353] do_syscall_64+0x58/0x80 [ 79.695376] ? up_read+0x17/0x20 [ 79.695401] ? lock_is_held_type+0xe3/0x140 [ 79.695429] ? asm_exc_page_fault+0x22/0x30 [ 79.695450] ? lockdep_hardirqs_on+0x7d/0x100 [ 79.695473] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 79.695493] RIP: 0033:0x7ff1ccefe3f1 [ 79.695516] Code: Unable to access opcode bytes at RIP 0x7ff1ccefe3c7. [ 79.695607] RSP: 002b:00007ffed4413378 EFLAGS: ---truncated---
CVE-2025-59529 1 Avahi 1 Avahi 2025-12-19 5.5 Medium
Avahi is a system which facilitates service discovery on a local network via the mDNS/DNS-SD protocol suite. In versions up to and including 0.9-rc2, the simple protocol server ignores the documented client limit and accepts unlimited connections, allowing for easy local DoS. Although `CLIENTS_MAX` is defined, `server_work()` unconditionally `accept()`s and `client_new()` always appends the new client and increments `n_clients`. There is no check against the limit. When client cannot be accepted as a result of maximal socket number of avahi-daemon, it logs unconditionally error per each connection. Unprivileged local users can exhaust daemon memory and file descriptors, causing a denial of service system-wide for mDNS/DNS-SD. Exhausting local file descriptors causes increased system load caused by logging errors of each of request. Overloading prevents glibc calls using nss-mdns plugins to resolve `*.local.` names and link-local addresses. As of time of publication, no known patched versions are available, but a candidate fix is available in pull request 808, and some workarounds are available. Simple clients are offered for nss-mdns package functionality. It is not possible to disable the unix socket `/run/avahi-daemon/socket`, but resolution requests received via DBus are not affected directly. Tools avahi-resolve, avahi-resolve-address and avahi-resolve-host-name are not affected, they use DBus interface. It is possible to change permissions of unix socket after avahi-daemon is started. But avahi-daemon does not provide any configuration for it. Additional access restrictions like SELinux can also prevent unwanted tools to access the socket and keep resolution working for trusted users.
CVE-2025-67745 1 Aiven 1 Myhoard 2025-12-19 7.1 High
MyHoard is a daemon for creating, managing and restoring MySQL backups. Starting in version 1.0.1 and prior to version 1.3.0, in some cases, myhoard logs the whole backup info, including the encryption key. Version 1.3.0 fixes the issue. As a workaround, direct logs into /dev/null.
CVE-2025-38300 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: sun8i-ce-cipher - fix error handling in sun8i_ce_cipher_prepare() Fix two DMA cleanup issues on the error path in sun8i_ce_cipher_prepare(): 1] If dma_map_sg() fails for areq->dst, the device driver would try to free DMA memory it has not allocated in the first place. To fix this, on the "theend_sgs" error path, call dma unmap only if the corresponding dma map was successful. 2] If the dma_map_single() call for the IV fails, the device driver would try to free an invalid DMA memory address on the "theend_iv" path: ------------[ cut here ]------------ DMA-API: sun8i-ce 1904000.crypto: device driver tries to free an invalid DMA memory address WARNING: CPU: 2 PID: 69 at kernel/dma/debug.c:968 check_unmap+0x123c/0x1b90 Modules linked in: skcipher_example(O+) CPU: 2 UID: 0 PID: 69 Comm: 1904000.crypto- Tainted: G O 6.15.0-rc3+ #24 PREEMPT Tainted: [O]=OOT_MODULE Hardware name: OrangePi Zero2 (DT) pc : check_unmap+0x123c/0x1b90 lr : check_unmap+0x123c/0x1b90 ... Call trace: check_unmap+0x123c/0x1b90 (P) debug_dma_unmap_page+0xac/0xc0 dma_unmap_page_attrs+0x1f4/0x5fc sun8i_ce_cipher_do_one+0x1bd4/0x1f40 crypto_pump_work+0x334/0x6e0 kthread_worker_fn+0x21c/0x438 kthread+0x374/0x664 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- To fix this, check for !dma_mapping_error() before calling dma_unmap_single() on the "theend_iv" path.
CVE-2025-11230 1 Haproxy 4 Aloha Appliance, Haproxy, Haproxy Enterprise and 1 more 2025-12-19 7.5 High
Inefficient algorithm complexity in mjson in HAProxy allows remote attackers to cause a denial of service via specially crafted JSON requests.
CVE-2025-66382 1 Libexpat Project 1 Libexpat 2025-12-19 2.9 Low
In libexpat through 2.7.3, a crafted file with an approximate size of 2 MiB can lead to dozens of seconds of processing time.