CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Use after free in Intel(R) Power Gadget software for Windows all versions may allow an authenticated user to potentially enable escalation of privilege via local access. |
A maliciously crafted SLDPRT file, when parsed in ASMKERN229A.dll through Autodesk applications, can cause a use-after-free vulnerability. This vulnerability, along with other vulnerabilities, could lead to code execution in the current process. |
A maliciously crafted X_B and X_T file, when parsed in pskernel.DLL through Autodesk applications, can cause a use-after-free vulnerability. This vulnerability, along with other vulnerabilities, could lead to code execution in the current process. |
An issue was discovered in Samsung Mobile Processor and Wearable Processor Exynos 850, Exynos 1080, Exynos 2100, Exynos 1280, Exynos 1380, Exynos 1330, Exynos W920, Exynos W930. The mobile processor lacks proper reference count checking, which can result in a UAF (Use-After-Free) vulnerability. |
A use-after-free issue was addressed with improved memory management. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7.6, macOS Sonoma 14.7.5, iOS 18.4 and iPadOS 18.4, visionOS 2.4. An attacker on the local network may be able to corrupt process memory. |
The public API function BIO_new_NDEF is a helper function used for streaming
ASN.1 data via a BIO. It is primarily used internally to OpenSSL to support the
SMIME, CMS and PKCS7 streaming capabilities, but may also be called directly by
end user applications.
The function receives a BIO from the caller, prepends a new BIO_f_asn1 filter
BIO onto the front of it to form a BIO chain, and then returns the new head of
the BIO chain to the caller. Under certain conditions, for example if a CMS
recipient public key is invalid, the new filter BIO is freed and the function
returns a NULL result indicating a failure. However, in this case, the BIO chain
is not properly cleaned up and the BIO passed by the caller still retains
internal pointers to the previously freed filter BIO. If the caller then goes on
to call BIO_pop() on the BIO then a use-after-free will occur. This will most
likely result in a crash.
This scenario occurs directly in the internal function B64_write_ASN1() which
may cause BIO_new_NDEF() to be called and will subsequently call BIO_pop() on
the BIO. This internal function is in turn called by the public API functions
PEM_write_bio_ASN1_stream, PEM_write_bio_CMS_stream, PEM_write_bio_PKCS7_stream,
SMIME_write_ASN1, SMIME_write_CMS and SMIME_write_PKCS7.
Other public API functions that may be impacted by this include
i2d_ASN1_bio_stream, BIO_new_CMS, BIO_new_PKCS7, i2d_CMS_bio_stream and
i2d_PKCS7_bio_stream.
The OpenSSL cms and smime command line applications are similarly affected. |
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and
decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data.
If the function succeeds then the "name_out", "header" and "data" arguments are
populated with pointers to buffers containing the relevant decoded data. The
caller is responsible for freeing those buffers. It is possible to construct a
PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex()
will return a failure code but will populate the header argument with a pointer
to a buffer that has already been freed. If the caller also frees this buffer
then a double free will occur. This will most likely lead to a crash. This
could be exploited by an attacker who has the ability to supply malicious PEM
files for parsing to achieve a denial of service attack.
The functions PEM_read_bio() and PEM_read() are simple wrappers around
PEM_read_bio_ex() and therefore these functions are also directly affected.
These functions are also called indirectly by a number of other OpenSSL
functions including PEM_X509_INFO_read_bio_ex() and
SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal
uses of these functions are not vulnerable because the caller does not free the
header argument if PEM_read_bio_ex() returns a failure code. These locations
include the PEM_read_bio_TYPE() functions as well as the decoders introduced in
OpenSSL 3.0.
The OpenSSL asn1parse command line application is also impacted by this issue. |
A memory leak flaw was found in the Linux kernel’s io_uring functionality in how a user registers a buffer ring with IORING_REGISTER_PBUF_RING, mmap() it, and then frees it. This flaw allows a local user to crash or potentially escalate their privileges on the system. |
A use-after-free flaw was found in the Linux kernel’s Netfilter functionality when adding a rule with NFTA_RULE_CHAIN_ID. This flaw allows a local user to crash or escalate their privileges on the system. |
A maliciously crafted IGES file, when parsed in ASMImport229A.dll through Autodesk applications, can be used to cause a use-after-free vulnerability. A malicious actor can leverage this vulnerability to cause a crash or execute arbitrary code in the context of the current process. |
A maliciously crafted CATPART, STP, and MODEL file, when parsed in atf_dwg_consumer.dll, rose_x64_vc15.dll and libodxdll through Autodesk applications, can cause a use-after-free vulnerability. This vulnerability, along with other vulnerabilities, can lead to code execution in the current process. |
A maliciously crafted MODEL file, when parsed in libodxdll through Autodesk applications, can cause a double free. This vulnerability, along with other vulnerabilities, can lead to code execution in the current process. |
A maliciously crafted SLDPRT file in ASMkern228A.dll when parsed through Autodesk applications can be used in user-after-free vulnerability. This vulnerability, along with other vulnerabilities, could lead to code execution in the current process. |
Miniaudio 0.10.35 has a Double free vulnerability that could cause a buffer overflow in ma_default_vfs_close__stdio in miniaudio.h. |
A maliciously crafted 3DM file when parsed in atf_api.dll through Autodesk AutoCAD can force a Use-After-Free vulnerability. A malicious actor can leverage this vulnerability to cause a crash, write sensitive data, or execute arbitrary code in the context of the current process. |
A maliciously crafted MODEL file when parsed in libodxdll.dll through Autodesk AutoCAD can force a Use-After-Free vulnerability. A malicious actor can leverage this vulnerability to cause a crash, write sensitive data, or execute arbitrary code in the context of the current process. |
A maliciously crafted 3DM file when parsed in atf_api.dll through Autodesk AutoCAD can force a Use-After-Free vulnerability. A malicious actor can leverage this vulnerability to cause a crash, write sensitive data, or execute arbitrary code in the context of the current process. |
A maliciously crafted DWF file, when parsed in w3dtk.dll through Autodesk Navisworks, can force a Use-After-Free. A malicious actor can leverage this vulnerability to cause a crash or execute arbitrary code in the context of the current process. |
GRUB2 does not call the module fini functions on exit, leading to Debian/Ubuntu's peimage GRUB2 module leaving UEFI system table hooks after exit. This lead to a use-after-free condition, and could possibly lead to secure boot bypass. |
A vulnerability has been found in appneta tcpreplay up to 4.5.1. The impacted element is the function get_l2len_protocol of the file get.c of the component tcprewrite. Such manipulation leads to use after free. The attack must be carried out locally. The exploit has been disclosed to the public and may be used. Upgrading to version 4.5.2-beta3 is sufficient to resolve this issue. You should upgrade the affected component. |