| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel through 6.2.7, fs/ntfs3/inode.c has an invalid kfree because it does not validate MFT flags before replaying logs. |
| Memory corruption due to double free issue in kernel in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile |
| A double-free condition exists in contrib/shpsort.c of shapelib 1.5.0 and older releases. This issue may allow an attacker to cause a denial of service or have other unspecified impact via control over malloc. |
| Memory corruption in BTHOST due to double free while music playback and calls over bluetooth headset in Snapdragon Mobile |
| Windows PrintWorkflowUserSvc Elevation of Privilege Vulnerability |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: fix tcp_init_transfer() to not reset icsk_ca_initialized
This commit fixes a bug (found by syzkaller) that could cause spurious
double-initializations for congestion control modules, which could cause
memory leaks or other problems for congestion control modules (like CDG)
that allocate memory in their init functions.
The buggy scenario constructed by syzkaller was something like:
(1) create a TCP socket
(2) initiate a TFO connect via sendto()
(3) while socket is in TCP_SYN_SENT, call setsockopt(TCP_CONGESTION),
which calls:
tcp_set_congestion_control() ->
tcp_reinit_congestion_control() ->
tcp_init_congestion_control()
(4) receive ACK, connection is established, call tcp_init_transfer(),
set icsk_ca_initialized=0 (without first calling cc->release()),
call tcp_init_congestion_control() again.
Note that in this sequence tcp_init_congestion_control() is called
twice without a cc->release() call in between. Thus, for CC modules
that allocate memory in their init() function, e.g, CDG, a memory leak
may occur. The syzkaller tool managed to find a reproducer that
triggered such a leak in CDG.
The bug was introduced when that commit 8919a9b31eb4 ("tcp: Only init
congestion control if not initialized already")
introduced icsk_ca_initialized and set icsk_ca_initialized to 0 in
tcp_init_transfer(), missing the possibility for a sequence like the
one above, where a process could call setsockopt(TCP_CONGESTION) in
state TCP_SYN_SENT (i.e. after the connect() or TFO open sendmsg()),
which would call tcp_init_congestion_control(). It did not intend to
reset any initialization that the user had already explicitly made;
it just missed the possibility of that particular sequence (which
syzkaller managed to find). |
| curl before 7.86.0 has a double free. If curl is told to use an HTTP proxy for a transfer with a non-HTTP(S) URL, it sets up the connection to the remote server by issuing a CONNECT request to the proxy, and then tunnels the rest of the protocol through. An HTTP proxy might refuse this request (HTTP proxies often only allow outgoing connections to specific port numbers, like 443 for HTTPS) and instead return a non-200 status code to the client. Due to flaws in the error/cleanup handling, this could trigger a double free in curl if one of the following schemes were used in the URL for the transfer: dict, gopher, gophers, ldap, ldaps, rtmp, rtmps, or telnet. The earliest affected version is 7.77.0. |
| usb_8dev_start_xmit in drivers/net/can/usb/usb_8dev.c in the Linux kernel through 5.17.1 has a double free. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix double free of anonymous device after snapshot creation failure
When creating a snapshot we may do a double free of an anonymous device
in case there's an error committing the transaction. The second free may
result in freeing an anonymous device number that was allocated by some
other subsystem in the kernel or another btrfs filesystem.
The steps that lead to this:
1) At ioctl.c:create_snapshot() we allocate an anonymous device number
and assign it to pending_snapshot->anon_dev;
2) Then we call btrfs_commit_transaction() and end up at
transaction.c:create_pending_snapshot();
3) There we call btrfs_get_new_fs_root() and pass it the anonymous device
number stored in pending_snapshot->anon_dev;
4) btrfs_get_new_fs_root() frees that anonymous device number because
btrfs_lookup_fs_root() returned a root - someone else did a lookup
of the new root already, which could some task doing backref walking;
5) After that some error happens in the transaction commit path, and at
ioctl.c:create_snapshot() we jump to the 'fail' label, and after
that we free again the same anonymous device number, which in the
meanwhile may have been reallocated somewhere else, because
pending_snapshot->anon_dev still has the same value as in step 1.
Recently syzbot ran into this and reported the following trace:
------------[ cut here ]------------
ida_free called for id=51 which is not allocated.
WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525
Modules linked in:
CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525
Code: 10 42 80 3c 28 (...)
RSP: 0018:ffffc90015a67300 EFLAGS: 00010246
RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000
RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000
RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4
R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246
R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246
FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0
Call Trace:
<TASK>
btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346
create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837
create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931
btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404
create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848
btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998
btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044
__btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306
btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393
btrfs_ioctl+0xa74/0xd40
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7fca3e67dda9
Code: 28 00 00 00 (...)
RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9
RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658
</TASK>
Where we get an explicit message where we attempt to free an anonymous
device number that is not currently allocated. It happens in a different
code path from the example below, at btrfs_get_root_ref(), so this change
may not fix the case triggered by sy
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
uio: Fix use-after-free in uio_open
core-1 core-2
-------------------------------------------------------
uio_unregister_device uio_open
idev = idr_find()
device_unregister(&idev->dev)
put_device(&idev->dev)
uio_device_release
get_device(&idev->dev)
kfree(idev)
uio_free_minor(minor)
uio_release
put_device(&idev->dev)
kfree(idev)
-------------------------------------------------------
In the core-1 uio_unregister_device(), the device_unregister will kfree
idev when the idev->dev kobject ref is 1. But after core-1
device_unregister, put_device and before doing kfree, the core-2 may
get_device. Then:
1. After core-1 kfree idev, the core-2 will do use-after-free for idev.
2. When core-2 do uio_release and put_device, the idev will be double
freed.
To address this issue, we can get idev atomic & inc idev reference with
minor_lock. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Fix the double free in scmi_debugfs_common_setup()
Clang static checker(scan-build) throws below warning:
| drivers/firmware/arm_scmi/driver.c:line 2915, column 2
| Attempt to free released memory.
When devm_add_action_or_reset() fails, scmi_debugfs_common_cleanup()
will run twice which causes double free of 'dbg->name'.
Remove the redundant scmi_debugfs_common_cleanup() to fix this problem. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix possible double free in smb2_set_ea()
Clang static checker(scan-build) warning:
fs/smb/client/smb2ops.c:1304:2: Attempt to free released memory.
1304 | kfree(ea);
| ^~~~~~~~~
There is a double free in such case:
'ea is initialized to NULL' -> 'first successful memory allocation for
ea' -> 'something failed, goto sea_exit' -> 'first memory release for ea'
-> 'goto replay_again' -> 'second goto sea_exit before allocate memory
for ea' -> 'second memory release for ea resulted in double free'.
Re-initialie 'ea' to NULL near to the replay_again label, it can fix this
double free problem. |
| In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: Fix double free of 'buf' in error path
smatch warning:
drivers/misc/fastrpc.c:1926 fastrpc_req_mmap() error: double free of 'buf'
In fastrpc_req_mmap() error path, the fastrpc buffer is freed in
fastrpc_req_munmap_impl() if unmap is successful.
But in the end, there is an unconditional call to fastrpc_buf_free().
So the above case triggers the double free of fastrpc buf. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix a use-after-free when hitting errors inside btrfs_submit_chunk()
[BUG]
There is an internal report that KASAN is reporting use-after-free, with
the following backtrace:
BUG: KASAN: slab-use-after-free in btrfs_check_read_bio+0xa68/0xb70 [btrfs]
Read of size 4 at addr ffff8881117cec28 by task kworker/u16:2/45
CPU: 1 UID: 0 PID: 45 Comm: kworker/u16:2 Not tainted 6.11.0-rc2-next-20240805-default+ #76
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
Workqueue: btrfs-endio btrfs_end_bio_work [btrfs]
Call Trace:
dump_stack_lvl+0x61/0x80
print_address_description.constprop.0+0x5e/0x2f0
print_report+0x118/0x216
kasan_report+0x11d/0x1f0
btrfs_check_read_bio+0xa68/0xb70 [btrfs]
process_one_work+0xce0/0x12a0
worker_thread+0x717/0x1250
kthread+0x2e3/0x3c0
ret_from_fork+0x2d/0x70
ret_from_fork_asm+0x11/0x20
Allocated by task 20917:
kasan_save_stack+0x37/0x60
kasan_save_track+0x10/0x30
__kasan_slab_alloc+0x7d/0x80
kmem_cache_alloc_noprof+0x16e/0x3e0
mempool_alloc_noprof+0x12e/0x310
bio_alloc_bioset+0x3f0/0x7a0
btrfs_bio_alloc+0x2e/0x50 [btrfs]
submit_extent_page+0x4d1/0xdb0 [btrfs]
btrfs_do_readpage+0x8b4/0x12a0 [btrfs]
btrfs_readahead+0x29a/0x430 [btrfs]
read_pages+0x1a7/0xc60
page_cache_ra_unbounded+0x2ad/0x560
filemap_get_pages+0x629/0xa20
filemap_read+0x335/0xbf0
vfs_read+0x790/0xcb0
ksys_read+0xfd/0x1d0
do_syscall_64+0x6d/0x140
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Freed by task 20917:
kasan_save_stack+0x37/0x60
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x50
__kasan_slab_free+0x4b/0x60
kmem_cache_free+0x214/0x5d0
bio_free+0xed/0x180
end_bbio_data_read+0x1cc/0x580 [btrfs]
btrfs_submit_chunk+0x98d/0x1880 [btrfs]
btrfs_submit_bio+0x33/0x70 [btrfs]
submit_one_bio+0xd4/0x130 [btrfs]
submit_extent_page+0x3ea/0xdb0 [btrfs]
btrfs_do_readpage+0x8b4/0x12a0 [btrfs]
btrfs_readahead+0x29a/0x430 [btrfs]
read_pages+0x1a7/0xc60
page_cache_ra_unbounded+0x2ad/0x560
filemap_get_pages+0x629/0xa20
filemap_read+0x335/0xbf0
vfs_read+0x790/0xcb0
ksys_read+0xfd/0x1d0
do_syscall_64+0x6d/0x140
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[CAUSE]
Although I cannot reproduce the error, the report itself is good enough
to pin down the cause.
The call trace is the regular endio workqueue context, but the
free-by-task trace is showing that during btrfs_submit_chunk() we
already hit a critical error, and is calling btrfs_bio_end_io() to error
out. And the original endio function called bio_put() to free the whole
bio.
This means a double freeing thus causing use-after-free, e.g.:
1. Enter btrfs_submit_bio() with a read bio
The read bio length is 128K, crossing two 64K stripes.
2. The first run of btrfs_submit_chunk()
2.1 Call btrfs_map_block(), which returns 64K
2.2 Call btrfs_split_bio()
Now there are two bios, one referring to the first 64K, the other
referring to the second 64K.
2.3 The first half is submitted.
3. The second run of btrfs_submit_chunk()
3.1 Call btrfs_map_block(), which by somehow failed
Now we call btrfs_bio_end_io() to handle the error
3.2 btrfs_bio_end_io() calls the original endio function
Which is end_bbio_data_read(), and it calls bio_put() for the
original bio.
Now the original bio is freed.
4. The submitted first 64K bio finished
Now we call into btrfs_check_read_bio() and tries to advance the bio
iter.
But since the original bio (thus its iter) is already freed, we
trigger the above use-after free.
And even if the memory is not poisoned/corrupted, we will later call
the original endio function, causing a double freeing.
[FIX]
Instead of calling btrfs_bio_end_io(), call btrfs_orig_bbio_end_io(),
which has the extra check on split bios and do the pr
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mm: fix crashes from deferred split racing folio migration
Even on 6.10-rc6, I've been seeing elusive "Bad page state"s (often on
flags when freeing, yet the flags shown are not bad: PG_locked had been
set and cleared??), and VM_BUG_ON_PAGE(page_ref_count(page) == 0)s from
deferred_split_scan()'s folio_put(), and a variety of other BUG and WARN
symptoms implying double free by deferred split and large folio migration.
6.7 commit 9bcef5973e31 ("mm: memcg: fix split queue list crash when large
folio migration") was right to fix the memcg-dependent locking broken in
85ce2c517ade ("memcontrol: only transfer the memcg data for migration"),
but missed a subtlety of deferred_split_scan(): it moves folios to its own
local list to work on them without split_queue_lock, during which time
folio->_deferred_list is not empty, but even the "right" lock does nothing
to secure the folio and the list it is on.
Fortunately, deferred_split_scan() is careful to use folio_try_get(): so
folio_migrate_mapping() can avoid the race by folio_undo_large_rmappable()
while the old folio's reference count is temporarily frozen to 0 - adding
such a freeze in the !mapping case too (originally, folio lock and
unmapping and no swap cache left an anon folio unreachable, so no freezing
was needed there: but the deferred split queue offers a way to reach it). |
| In the Linux kernel, the following vulnerability has been resolved:
media: mgb4: Fix double debugfs remove
Fixes an error where debugfs_remove_recursive() is called first on a parent
directory and then again on a child which causes a kernel panic.
[hverkuil: added Fixes/Cc tags] |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: core: delete incorrect free in pinctrl_enable()
The "pctldev" struct is allocated in devm_pinctrl_register_and_init().
It's a devm_ managed pointer that is freed by devm_pinctrl_dev_release(),
so freeing it in pinctrl_enable() will lead to a double free.
The devm_pinctrl_dev_release() function frees the pindescs and destroys
the mutex as well. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: fix the double free in rvu_npc_freemem()
Clang static checker(scan-build) warning:
drivers/net/ethernet/marvell/octeontx2/af/rvu_npc.c:line 2184, column 2
Attempt to free released memory.
npc_mcam_rsrcs_deinit() has released 'mcam->counters.bmap'. Deleted this
redundant kfree() to fix this double free problem. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: mediatek: Fix double free of skb in coredump
hci_devcd_append() would free the skb on error so the caller don't
have to free it again otherwise it would cause the double free of skb.
Reported-by : Dan Carpenter <dan.carpenter@linaro.org> |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3-its: Prevent double free on error
The error handling path in its_vpe_irq_domain_alloc() causes a double free
when its_vpe_init() fails after successfully allocating at least one
interrupt. This happens because its_vpe_irq_domain_free() frees the
interrupts along with the area bitmap and the vprop_page and
its_vpe_irq_domain_alloc() subsequently frees the area bitmap and the
vprop_page again.
Fix this by unconditionally invoking its_vpe_irq_domain_free() which
handles all cases correctly and by removing the bitmap/vprop_page freeing
from its_vpe_irq_domain_alloc().
[ tglx: Massaged change log ] |