CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
of: Fix double free in of_parse_phandle_with_args_map
In of_parse_phandle_with_args_map() the inner loop that
iterates through the map entries calls of_node_put(new)
to free the reference acquired by the previous iteration
of the inner loop. This assumes that the value of "new" is
NULL on the first iteration of the inner loop.
Make sure that this is true in all iterations of the outer
loop by setting "new" to NULL after its value is assigned to "cur".
Extend the unittest to detect the double free and add an additional
test case that actually triggers this path. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a potential double-free in fs_any_create_groups
When kcalloc() for ft->g succeeds but kvzalloc() for in fails,
fs_any_create_groups() will free ft->g. However, its caller
fs_any_create_table() will free ft->g again through calling
mlx5e_destroy_flow_table(), which will lead to a double-free.
Fix this by setting ft->g to NULL in fs_any_create_groups(). |
In the Linux kernel, the following vulnerability has been resolved:
ubifs: rename_whiteout: Fix double free for whiteout_ui->data
'whiteout_ui->data' will be freed twice if space budget fail for
rename whiteout operation as following process:
rename_whiteout
dev = kmalloc
whiteout_ui->data = dev
kfree(whiteout_ui->data) // Free first time
iput(whiteout)
ubifs_free_inode
kfree(ui->data) // Double free!
KASAN reports:
==================================================================
BUG: KASAN: double-free or invalid-free in ubifs_free_inode+0x4f/0x70
Call Trace:
kfree+0x117/0x490
ubifs_free_inode+0x4f/0x70 [ubifs]
i_callback+0x30/0x60
rcu_do_batch+0x366/0xac0
__do_softirq+0x133/0x57f
Allocated by task 1506:
kmem_cache_alloc_trace+0x3c2/0x7a0
do_rename+0x9b7/0x1150 [ubifs]
ubifs_rename+0x106/0x1f0 [ubifs]
do_syscall_64+0x35/0x80
Freed by task 1506:
kfree+0x117/0x490
do_rename.cold+0x53/0x8a [ubifs]
ubifs_rename+0x106/0x1f0 [ubifs]
do_syscall_64+0x35/0x80
The buggy address belongs to the object at ffff88810238bed8 which
belongs to the cache kmalloc-8 of size 8
==================================================================
Let ubifs_free_inode() free 'whiteout_ui->data'. BTW, delete unused
assignment 'whiteout_ui->data_len = 0', process 'ubifs_evict_inode()
-> ubifs_jnl_delete_inode() -> ubifs_jnl_write_inode()' doesn't need it
(because 'inc_nlink(whiteout)' won't be excuted by 'goto out_release',
and the nlink of whiteout inode is 0). |
In the Linux kernel, the following vulnerability has been resolved:
igbvf: fix double free in `igbvf_probe`
In `igbvf_probe`, if register_netdev() fails, the program will go to
label err_hw_init, and then to label err_ioremap. In free_netdev() which
is just below label err_ioremap, there is `list_for_each_entry_safe` and
`netif_napi_del` which aims to delete all entries in `dev->napi_list`.
The program has added an entry `adapter->rx_ring->napi` which is added by
`netif_napi_add` in igbvf_alloc_queues(). However, adapter->rx_ring has
been freed below label err_hw_init. So this a UAF.
In terms of how to patch the problem, we can refer to igbvf_remove() and
delete the entry before `adapter->rx_ring`.
The KASAN logs are as follows:
[ 35.126075] BUG: KASAN: use-after-free in free_netdev+0x1fd/0x450
[ 35.127170] Read of size 8 at addr ffff88810126d990 by task modprobe/366
[ 35.128360]
[ 35.128643] CPU: 1 PID: 366 Comm: modprobe Not tainted 5.15.0-rc2+ #14
[ 35.129789] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 35.131749] Call Trace:
[ 35.132199] dump_stack_lvl+0x59/0x7b
[ 35.132865] print_address_description+0x7c/0x3b0
[ 35.133707] ? free_netdev+0x1fd/0x450
[ 35.134378] __kasan_report+0x160/0x1c0
[ 35.135063] ? free_netdev+0x1fd/0x450
[ 35.135738] kasan_report+0x4b/0x70
[ 35.136367] free_netdev+0x1fd/0x450
[ 35.137006] igbvf_probe+0x121d/0x1a10 [igbvf]
[ 35.137808] ? igbvf_vlan_rx_add_vid+0x100/0x100 [igbvf]
[ 35.138751] local_pci_probe+0x13c/0x1f0
[ 35.139461] pci_device_probe+0x37e/0x6c0
[ 35.165526]
[ 35.165806] Allocated by task 366:
[ 35.166414] ____kasan_kmalloc+0xc4/0xf0
[ 35.167117] foo_kmem_cache_alloc_trace+0x3c/0x50 [igbvf]
[ 35.168078] igbvf_probe+0x9c5/0x1a10 [igbvf]
[ 35.168866] local_pci_probe+0x13c/0x1f0
[ 35.169565] pci_device_probe+0x37e/0x6c0
[ 35.179713]
[ 35.179993] Freed by task 366:
[ 35.180539] kasan_set_track+0x4c/0x80
[ 35.181211] kasan_set_free_info+0x1f/0x40
[ 35.181942] ____kasan_slab_free+0x103/0x140
[ 35.182703] kfree+0xe3/0x250
[ 35.183239] igbvf_probe+0x1173/0x1a10 [igbvf]
[ 35.184040] local_pci_probe+0x13c/0x1f0 |
In the Linux kernel, the following vulnerability has been resolved:
net: marvell: prestera: fix double free issue on err path
fix error path handling in prestera_bridge_port_join() that
cases prestera driver to crash (see below).
Trace:
Internal error: Oops: 96000044 [#1] SMP
Modules linked in: prestera_pci prestera uio_pdrv_genirq
CPU: 1 PID: 881 Comm: ip Not tainted 5.15.0 #1
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : prestera_bridge_destroy+0x2c/0xb0 [prestera]
lr : prestera_bridge_port_join+0x2cc/0x350 [prestera]
sp : ffff800011a1b0f0
...
x2 : ffff000109ca6c80 x1 : dead000000000100 x0 : dead000000000122
Call trace:
prestera_bridge_destroy+0x2c/0xb0 [prestera]
prestera_bridge_port_join+0x2cc/0x350 [prestera]
prestera_netdev_port_event.constprop.0+0x3c4/0x450 [prestera]
prestera_netdev_event_handler+0xf4/0x110 [prestera]
raw_notifier_call_chain+0x54/0x80
call_netdevice_notifiers_info+0x54/0xa0
__netdev_upper_dev_link+0x19c/0x380 |
In the Linux kernel, the following vulnerability has been resolved:
regmap: Fix possible double-free in regcache_rbtree_exit()
In regcache_rbtree_insert_to_block(), when 'present' realloc failed,
the 'blk' which is supposed to assign to 'rbnode->block' will be freed,
so 'rbnode->block' points a freed memory, in the error handling path of
regcache_rbtree_init(), 'rbnode->block' will be freed again in
regcache_rbtree_exit(), KASAN will report double-free as follows:
BUG: KASAN: double-free or invalid-free in kfree+0xce/0x390
Call Trace:
slab_free_freelist_hook+0x10d/0x240
kfree+0xce/0x390
regcache_rbtree_exit+0x15d/0x1a0
regcache_rbtree_init+0x224/0x2c0
regcache_init+0x88d/0x1310
__regmap_init+0x3151/0x4a80
__devm_regmap_init+0x7d/0x100
madera_spi_probe+0x10f/0x333 [madera_spi]
spi_probe+0x183/0x210
really_probe+0x285/0xc30
To fix this, moving up the assignment of rbnode->block to immediately after
the reallocation has succeeded so that the data structure stays valid even
if the second reallocation fails. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix a memory leak in an error path of qla2x00_process_els()
Commit 8c0eb596baa5 ("[SCSI] qla2xxx: Fix a memory leak in an error path of
qla2x00_process_els()"), intended to change:
bsg_job->request->msgcode == FC_BSG_HST_ELS_NOLOGIN
bsg_job->request->msgcode != FC_BSG_RPT_ELS
but changed it to:
bsg_job->request->msgcode == FC_BSG_RPT_ELS
instead.
Change the == to a != to avoid leaking the fcport structure or freeing
unallocated memory. |
In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix ltout double free on completion race
Always remove linked timeout on io_link_timeout_fn() from the master
request link list, otherwise we may get use-after-free when first
io_link_timeout_fn() puts linked timeout in the fail path, and then
will be found and put on master's free. |
In the Linux kernel, the following vulnerability has been resolved:
tun: avoid double free in tun_free_netdev
Avoid double free in tun_free_netdev() by moving the
dev->tstats and tun->security allocs to a new ndo_init routine
(tun_net_init()) that will be called by register_netdevice().
ndo_init is paired with the desctructor (tun_free_netdev()),
so if there's an error in register_netdevice() the destructor
will handle the frees.
BUG: KASAN: double-free or invalid-free in selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605
CPU: 0 PID: 25750 Comm: syz-executor416 Not tainted 5.16.0-rc2-syzk #1
Hardware name: Red Hat KVM, BIOS
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:106
print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:247
kasan_report_invalid_free+0x55/0x80 mm/kasan/report.c:372
____kasan_slab_free mm/kasan/common.c:346 [inline]
__kasan_slab_free+0x107/0x120 mm/kasan/common.c:374
kasan_slab_free include/linux/kasan.h:235 [inline]
slab_free_hook mm/slub.c:1723 [inline]
slab_free_freelist_hook mm/slub.c:1749 [inline]
slab_free mm/slub.c:3513 [inline]
kfree+0xac/0x2d0 mm/slub.c:4561
selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605
security_tun_dev_free_security+0x4f/0x90 security/security.c:2342
tun_free_netdev+0xe6/0x150 drivers/net/tun.c:2215
netdev_run_todo+0x4df/0x840 net/core/dev.c:10627
rtnl_unlock+0x13/0x20 net/core/rtnetlink.c:112
__tun_chr_ioctl+0x80c/0x2870 drivers/net/tun.c:3302
tun_chr_ioctl+0x2f/0x40 drivers/net/tun.c:3311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
In the Linux kernel, the following vulnerability has been resolved:
iio: core: fix ioctl handlers removal
Currently ioctl handlers are removed twice. For the first time during
iio_device_unregister() then later on inside
iio_device_unregister_eventset() and iio_buffers_free_sysfs_and_mask().
Double free leads to kernel panic.
Fix this by not touching ioctl handlers list directly but rather
letting code responsible for registration call the matching cleanup
routine itself. |
In the Linux kernel, the following vulnerability has been resolved:
dm rq: fix double free of blk_mq_tag_set in dev remove after table load fails
When loading a device-mapper table for a request-based mapped device,
and the allocation/initialization of the blk_mq_tag_set for the device
fails, a following device remove will cause a double free.
E.g. (dmesg):
device-mapper: core: Cannot initialize queue for request-based dm-mq mapped device
device-mapper: ioctl: unable to set up device queue for new table.
Unable to handle kernel pointer dereference in virtual kernel address space
Failing address: 0305e098835de000 TEID: 0305e098835de803
Fault in home space mode while using kernel ASCE.
AS:000000025efe0007 R3:0000000000000024
Oops: 0038 ilc:3 [#1] SMP
Modules linked in: ... lots of modules ...
Supported: Yes, External
CPU: 0 PID: 7348 Comm: multipathd Kdump: loaded Tainted: G W X 5.3.18-53-default #1 SLE15-SP3
Hardware name: IBM 8561 T01 7I2 (LPAR)
Krnl PSW : 0704e00180000000 000000025e368eca (kfree+0x42/0x330)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
Krnl GPRS: 000000000000004a 000000025efe5230 c1773200d779968d 0000000000000000
000000025e520270 000000025e8d1b40 0000000000000003 00000007aae10000
000000025e5202a2 0000000000000001 c1773200d779968d 0305e098835de640
00000007a8170000 000003ff80138650 000000025e5202a2 000003e00396faa8
Krnl Code: 000000025e368eb8: c4180041e100 lgrl %r1,25eba50b8
000000025e368ebe: ecba06b93a55 risbg %r11,%r10,6,185,58
#000000025e368ec4: e3b010000008 ag %r11,0(%r1)
>000000025e368eca: e310b0080004 lg %r1,8(%r11)
000000025e368ed0: a7110001 tmll %r1,1
000000025e368ed4: a7740129 brc 7,25e369126
000000025e368ed8: e320b0080004 lg %r2,8(%r11)
000000025e368ede: b904001b lgr %r1,%r11
Call Trace:
[<000000025e368eca>] kfree+0x42/0x330
[<000000025e5202a2>] blk_mq_free_tag_set+0x72/0xb8
[<000003ff801316a8>] dm_mq_cleanup_mapped_device+0x38/0x50 [dm_mod]
[<000003ff80120082>] free_dev+0x52/0xd0 [dm_mod]
[<000003ff801233f0>] __dm_destroy+0x150/0x1d0 [dm_mod]
[<000003ff8012bb9a>] dev_remove+0x162/0x1c0 [dm_mod]
[<000003ff8012a988>] ctl_ioctl+0x198/0x478 [dm_mod]
[<000003ff8012ac8a>] dm_ctl_ioctl+0x22/0x38 [dm_mod]
[<000000025e3b11ee>] ksys_ioctl+0xbe/0xe0
[<000000025e3b127a>] __s390x_sys_ioctl+0x2a/0x40
[<000000025e8c15ac>] system_call+0xd8/0x2c8
Last Breaking-Event-Address:
[<000000025e52029c>] blk_mq_free_tag_set+0x6c/0xb8
Kernel panic - not syncing: Fatal exception: panic_on_oops
When allocation/initialization of the blk_mq_tag_set fails in
dm_mq_init_request_queue(), it is uninitialized/freed, but the pointer
is not reset to NULL; so when dev_remove() later gets into
dm_mq_cleanup_mapped_device() it sees the pointer and tries to
uninitialize and free it again.
Fix this by setting the pointer to NULL in dm_mq_init_request_queue()
error-handling. Also set it to NULL in dm_mq_cleanup_mapped_device(). |
In the Linux kernel, the following vulnerability has been resolved:
media: atomisp: Fix use after free in atomisp_alloc_css_stat_bufs()
The "s3a_buf" is freed along with all the other items on the
"asd->s3a_stats" list. It leads to a double free and a use after free. |
Windows USB Print Driver Elevation of Privilege Vulnerability |
Microsoft Excel Remote Code Execution Vulnerability |
NTFS Elevation of Privilege Vulnerability |
A double free vulnerability was found in QEMU virtio devices (virtio-gpu, virtio-serial-bus, virtio-crypto), where the mem_reentrancy_guard flag insufficiently protects against DMA reentrancy issues. This issue could allow a malicious privileged guest user to crash the QEMU process on the host, resulting in a denial of service or allow arbitrary code execution within the context of the QEMU process on the host. |
diplib v3.0.0 is vulnerable to Double Free. |
In audio, there is a possible memory corruption due to a logic error. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS07310571; Issue ID: ALPS07310571. |
A double-free flaw was found in the Linux kernel’s NTFS3 subsystem in how a user triggers remount and umount simultaneously. This flaw allows a local user to crash or potentially escalate their privileges on the system. |
An issue was discovered in libxml2 before 2.10.3. Certain invalid XML entity definitions can corrupt a hash table key, potentially leading to subsequent logic errors. In one case, a double-free can be provoked. |