| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Fuji Electric FRENIC LOADER v3.3 v7.3.4.1a of FRENIC-Mini (C1), FRENIC-Mini (C2), FRENIC-Eco, FRENIC-Multi, FRENIC-MEGA, FRENIC-Ace. A buffer over-read vulnerability may allow remote code execution on the device. |
| Fuji Electric Alpha5 Smart Loader Versions 3.7 and prior. A buffer overflow information disclosure vulnerability occurs when parsing certain file types. |
| An out-of-bounds read issue was discovered in the Yubico-Piv 1.5.0 smartcard driver. The file lib/ykpiv.c contains the following code in the function `_ykpiv_fetch_object()`: {% highlight c %} if(sw == SW_SUCCESS) { size_t outlen; int offs = _ykpiv_get_length(data + 1, &outlen); if(offs == 0) { return YKPIV_SIZE_ERROR; } memmove(data, data + 1 + offs, outlen); *len = outlen; return YKPIV_OK; } else { return YKPIV_GENERIC_ERROR; } {% endhighlight %} -- in the end, a `memmove()` occurs with a length retrieved from APDU data. This length is not checked for whether it is outside of the APDU data retrieved. Therefore the `memmove()` could copy bytes behind the allocated data buffer into this buffer. |
| An issue was discovered in libpbc.a in cloudwu PBC through 2017-03-02. A buffer over-read can occur in pbc_wmessage_string in wmessage.c for PTYPE_ENUM. |
| The Gluster file system through versions 4.1.4 and 3.12 is vulnerable to a heap-based buffer overflow in the '__server_getspec' function via the 'gf_getspec_req' RPC message. A remote authenticated attacker could exploit this to cause a denial of service or other potential unspecified impact. |
| The Gluster file system through versions 3.12 and 4.1.4 is vulnerable to a buffer overflow in the 'features/index' translator via the code handling the 'GF_XATTR_CLRLK_CMD' xattr in the 'pl_getxattr' function. A remote authenticated attacker could exploit this on a mounted volume to cause a denial of service. |
| A flaw was discovered in the HPACK decoder of HAProxy, before 1.8.14, that is used for HTTP/2. An out-of-bounds read access in hpack_valid_idx() resulted in a remote crash and denial of service. |
| A security flaw was found in the chap_server_compute_md5() function in the ISCSI target code in the Linux kernel in a way an authentication request from an ISCSI initiator is processed. An unauthenticated remote attacker can cause a stack buffer overflow and smash up to 17 bytes of the stack. The attack requires the iSCSI target to be enabled on the victim host. Depending on how the target's code was built (i.e. depending on a compiler, compile flags and hardware architecture) an attack may lead to a system crash and thus to a denial-of-service or possibly to a non-authorized access to data exported by an iSCSI target. Due to the nature of the flaw, privilege escalation cannot be fully ruled out, although we believe it is highly unlikely. Kernel versions 4.18.x, 4.14.x and 3.10.x are believed to be vulnerable. |
| curl before version 7.61.1 is vulnerable to a buffer overrun in the NTLM authentication code. The internal function Curl_ntlm_core_mk_nt_hash multiplies the length of the password by two (SUM) to figure out how large temporary storage area to allocate from the heap. The length value is then subsequently used to iterate over the password and generate output into the allocated storage buffer. On systems with a 32 bit size_t, the math to calculate SUM triggers an integer overflow when the password length exceeds 2GB (2^31 bytes). This integer overflow usually causes a very small buffer to actually get allocated instead of the intended very huge one, making the use of that buffer end up in a heap buffer overflow. (This bug is almost identical to CVE-2017-8816.) |
| An issue was discovered in the Linux kernel through 4.17.10. There is out-of-bounds access in write_extent_buffer() when mounting and operating a crafted btrfs image, because of a lack of verification that each block group has a corresponding chunk at mount time, within btrfs_read_block_groups in fs/btrfs/extent-tree.c. |
| An issue has been discovered in Bento4 1.5.1-624. AP4_Mp4AudioDsiParser::ReadBits in Codecs/Ap4Mp4AudioInfo.cpp has a heap-based buffer over-read. |
| An issue has been discovered in Bento4 1.5.1-624. AP4_MemoryByteStream::WritePartial in Core/Ap4ByteStream.cpp has a buffer over-read. |
| An issue has been discovered in Bento4 1.5.1-624. AP4_BytesToUInt16BE in Core/Ap4Utils.h has a heap-based buffer over-read after a call from the AP4_Stz2Atom class. |
| An issue has been discovered in Bento4 1.5.1-624. AP4_AvccAtom::Create in Core/Ap4AvccAtom.cpp has a heap-based buffer over-read. |
| An issue was discovered in libthulac.so in THULAC through 2018-02-25. A heap-based buffer over-read can occur in NGramFeature::find_bases in include/cb_ngram_feature.h. |
| An issue has been found in third-party PNM decoding associated with libpng 1.6.35. It is a stack-based buffer overflow in the function get_token in pnm2png.c in pnm2png. |
| There exists one invalid memory read bug in AP4_SampleDescription::GetType() in Ap4SampleDescription.h in Bento4 1.5.1-624, which can allow attackers to cause a denial-of-service via a crafted mp4 file. This vulnerability can be triggered by the executable mp42ts. |
| There exists one invalid memory read bug in AP4_SampleDescription::GetFormat() in Ap4SampleDescription.h in Bento4 1.5.1-624, which can allow attackers to cause a denial-of-service via a crafted mp4 file. This vulnerability can be triggered by the executable mp42ts. |
| An issue was discovered in Bento4 1.5.1-624. There is a heap-based buffer over-read in AP4_Mpeg2TsVideoSampleStream::WriteSample in Core/Ap4Mpeg2Ts.cpp after a call from Mp42Hls.cpp, a related issue to CVE-2018-13846. |
| An issue was discovered in aubio 0.4.6. A buffer over-read can occur in new_aubio_pitchyinfft in pitch/pitchyinfft.c, as demonstrated by aubionotes. |