| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The recv_and_process_client_pkt function in networking/ntpd.c in busybox allows remote attackers to cause a denial of service (CPU and bandwidth consumption) via a forged NTP packet, which triggers a communication loop. |
| Use-after-free vulnerability in libxml2 through 2.9.4, as used in Google Chrome before 52.0.2743.82, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors related to the XPointer range-to function. |
| Jansson 2.7 and earlier allows context-dependent attackers to cause a denial of service (deep recursion, stack consumption, and crash) via crafted JSON data. |
| The xmlStringGetNodeList function in tree.c in libxml2 2.9.3 and earlier, when used in recovery mode, allows context-dependent attackers to cause a denial of service (infinite recursion, stack consumption, and application crash) via a crafted XML document. |
| JumpCloud Remote Assist for Windows versions prior to 0.317.0 include an uninstaller that is invoked by the JumpCloud Windows Agent as NT AUTHORITY\SYSTEM during agent uninstall or update operations. The Remote Assist uninstaller performs privileged create, write, execute, and delete actions on predictable files inside a user-writable %TEMP% subdirectory without validating that the directory is trusted or resetting its ACLs when it already exists. A local, low-privileged attacker can pre-create the directory with weak permissions and leverage mount-point or symbolic-link redirection to (a) coerce arbitrary file writes to protected locations, leading to denial of service (e.g., by overwriting sensitive system files), or (b) win a race to redirect DeleteFileW() to attacker-chosen targets, enabling arbitrary file or folder deletion and local privilege escalation to SYSTEM. This issue is fixed in JumpCloud Remote Assist 0.317.0 and affects Windows systems where Remote Assist is installed and managed through the Agent lifecycle. |
| The Aimeos GrapesJS CMS extension provides page editor for creating content pages based on extensible components. Prior to 2021.10.8, 2022.10.8, 2023.10.8, 2024.10.8, and 2025.10.8, Javascript code can be injected by malicious editors for a stored XSS attack if the standard Content Security Policy is disabled. This vulnerability is fixed in 2021.10.8, 2022.10.8, 2023.10.8, 2024.10.8, and 2025.10.8. |
| ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. In 5.5.1, 5.4.3, 5.3.4, 5.2.6, 5.1.6, and earlier, when AVRCP is enabled on ESP32, receiving a malformed VENDOR DEPENDENT command from a peer device can cause the Bluetooth stack to access memory before validating the command buffer length. This may lead to an out-of-bounds read, potentially exposing unintended memory content or causing unexpected behavior. |
| SingularityCE and SingularityPRO are open source container platforms. Prior to SingularityCE 4.3.5 and SingularityPRO 4.1.11 and 4.3.5, if a user relies on LSM restrictions to prevent malicious operations then, under certain circumstances, an attacker can redirect the LSM label write operation so that it is ineffective. The attacker must cause the user to run a malicious container image that redirects the mount of /proc to the destination of a shared mount, either known to be configured on the target system, or that will be specified by the user when running the container. The attacker must also control the content of the shared mount, for example through another malicious container which also binds it, or as a user with relevant permissions on the host system it is bound from. This vulnerability is fixed in SingularityCE 4.3.5 and SingularityPRO 4.1.11 and 4.3.5. |
| The DesignThemes LMS plugin for WordPress is vulnerable to Privilege Escalation in all versions up to, and including, 1.0.4. This is due to the 'dtlms_register_user_front_end' function not restricting what user roles a user can register with. This makes it possible for unauthenticated attackers to supply the 'administrator' role during registration and gain administrator access to the site. |
| The Iskra iHUB and iHUB Lite smart metering gateway exposes its web management interface without requiring authentication, allowing unauthenticated users to access and modify critical device settings. |
| OpenPrinting CUPS is an open source printing system for Linux and other Unix-like operating systems. Prior to version 2.4.15, a user in the lpadmin group can use the cups web ui to change the config and insert a malicious line. Then the cupsd process which runs as root will parse the new config and cause an out-of-bound write. This issue has been patched in version 2.4.15. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: avoid NULL dereference when chunk data buffer is missing
chunk->skb pointer is dereferenced in the if-block where it's supposed
to be NULL only.
chunk->skb can only be NULL if chunk->head_skb is not. Check for frag_list
instead and do it just before replacing chunk->skb. We're sure that
otherwise chunk->skb is non-NULL because of outer if() condition. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Clean up only new IRQ glue on request_irq() failure
The mlx5_irq_alloc() function can inadvertently free the entire rmap
and end up in a crash[1] when the other threads tries to access this,
when request_irq() fails due to exhausted IRQ vectors. This commit
modifies the cleanup to remove only the specific IRQ mapping that was
just added.
This prevents removal of other valid mappings and ensures precise
cleanup of the failed IRQ allocation's associated glue object.
Note: This error is observed when both fwctl and rds configs are enabled.
[1]
mlx5_core 0000:05:00.0: Successfully registered panic handler for port 1
mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to
request irq. err = -28
infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while
trying to test write-combining support
mlx5_core 0000:05:00.0: Successfully unregistered panic handler for port 1
mlx5_core 0000:06:00.0: Successfully registered panic handler for port 1
mlx5_core 0000:06:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to
request irq. err = -28
infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while
trying to test write-combining support
mlx5_core 0000:06:00.0: Successfully unregistered panic handler for port 1
mlx5_core 0000:03:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to
request irq. err = -28
mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to
request irq. err = -28
general protection fault, probably for non-canonical address
0xe277a58fde16f291: 0000 [#1] SMP NOPTI
RIP: 0010:free_irq_cpu_rmap+0x23/0x7d
Call Trace:
<TASK>
? show_trace_log_lvl+0x1d6/0x2f9
? show_trace_log_lvl+0x1d6/0x2f9
? mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core]
? __die_body.cold+0x8/0xa
? die_addr+0x39/0x53
? exc_general_protection+0x1c4/0x3e9
? dev_vprintk_emit+0x5f/0x90
? asm_exc_general_protection+0x22/0x27
? free_irq_cpu_rmap+0x23/0x7d
mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core]
irq_pool_request_vector+0x7d/0x90 [mlx5_core]
mlx5_irq_request+0x2e/0xe0 [mlx5_core]
mlx5_irq_request_vector+0xad/0xf7 [mlx5_core]
comp_irq_request_pci+0x64/0xf0 [mlx5_core]
create_comp_eq+0x71/0x385 [mlx5_core]
? mlx5e_open_xdpsq+0x11c/0x230 [mlx5_core]
mlx5_comp_eqn_get+0x72/0x90 [mlx5_core]
? xas_load+0x8/0x91
mlx5_comp_irqn_get+0x40/0x90 [mlx5_core]
mlx5e_open_channel+0x7d/0x3c7 [mlx5_core]
mlx5e_open_channels+0xad/0x250 [mlx5_core]
mlx5e_open_locked+0x3e/0x110 [mlx5_core]
mlx5e_open+0x23/0x70 [mlx5_core]
__dev_open+0xf1/0x1a5
__dev_change_flags+0x1e1/0x249
dev_change_flags+0x21/0x5c
do_setlink+0x28b/0xcc4
? __nla_parse+0x22/0x3d
? inet6_validate_link_af+0x6b/0x108
? cpumask_next+0x1f/0x35
? __snmp6_fill_stats64.constprop.0+0x66/0x107
? __nla_validate_parse+0x48/0x1e6
__rtnl_newlink+0x5ff/0xa57
? kmem_cache_alloc_trace+0x164/0x2ce
rtnl_newlink+0x44/0x6e
rtnetlink_rcv_msg+0x2bb/0x362
? __netlink_sendskb+0x4c/0x6c
? netlink_unicast+0x28f/0x2ce
? rtnl_calcit.isra.0+0x150/0x146
netlink_rcv_skb+0x5f/0x112
netlink_unicast+0x213/0x2ce
netlink_sendmsg+0x24f/0x4d9
__sock_sendmsg+0x65/0x6a
____sys_sendmsg+0x28f/0x2c9
? import_iovec+0x17/0x2b
___sys_sendmsg+0x97/0xe0
__sys_sendmsg+0x81/0xd8
do_syscall_64+0x35/0x87
entry_SYSCALL_64_after_hwframe+0x6e/0x0
RIP: 0033:0x7fc328603727
Code: c3 66 90 41 54 41 89 d4 55 48 89 f5 53 89 fb 48 83 ec 10 e8 0b ed
ff ff 44 89 e2 48 89 ee 89 df 41 89 c0 b8 2e 00 00 00 0f 05 <48> 3d 00
f0 ff ff 77 35 44 89 c7 48 89 44 24 08 e8 44 ed ff ff 48
RSP: 002b:00007ffe8eb3f1a0 EFLAGS: 00000293 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fc328603727
RDX: 0000000000000000 RSI: 00007ffe8eb3f1f0 RDI: 000000000000000d
RBP: 00007ffe8eb3f1f0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000
R13: 00000000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: catch commit test ctx alloc failure
Patch series "mm/damon/sysfs: fix commit test damon_ctx [de]allocation".
DAMON sysfs interface dynamically allocates and uses a damon_ctx object
for testing if given inputs for online DAMON parameters update is valid.
The object is being used without an allocation failure check, and leaked
when the test succeeds. Fix the two bugs.
This patch (of 2):
The damon_ctx for testing online DAMON parameters commit inputs is used
without its allocation failure check. This could result in an invalid
memory access. Fix it by directly returning an error when the allocation
failed. |
| In the Linux kernel, the following vulnerability has been resolved:
media: pci: mg4b: fix uninitialized iio scan data
Fix potential leak of uninitialized stack data to userspace by ensuring
that the `scan` structure is zeroed before use. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/vaddr: do not repeat pte_offset_map_lock() until success
DAMON's virtual address space operation set implementation (vaddr) calls
pte_offset_map_lock() inside the page table walk callback function. This
is for reading and writing page table accessed bits. If
pte_offset_map_lock() fails, it retries by returning the page table walk
callback function with ACTION_AGAIN.
pte_offset_map_lock() can continuously fail if the target is a pmd
migration entry, though. Hence it could cause an infinite page table walk
if the migration cannot be done until the page table walk is finished.
This indeed caused a soft lockup when CPU hotplugging and DAMON were
running in parallel.
Avoid the infinite loop by simply not retrying the page table walk. DAMON
is promising only a best-effort accuracy, so missing access to such pages
is no problem. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: clear extent cache after moving/defragmenting extents
The extent map cache can become stale when extents are moved or
defragmented, causing subsequent operations to see outdated extent flags.
This triggers a BUG_ON in ocfs2_refcount_cal_cow_clusters().
The problem occurs when:
1. copy_file_range() creates a reflinked extent with OCFS2_EXT_REFCOUNTED
2. ioctl(FITRIM) triggers ocfs2_move_extents()
3. __ocfs2_move_extents_range() reads and caches the extent (flags=0x2)
4. ocfs2_move_extent()/ocfs2_defrag_extent() calls __ocfs2_move_extent()
which clears OCFS2_EXT_REFCOUNTED flag on disk (flags=0x0)
5. The extent map cache is not invalidated after the move
6. Later write() operations read stale cached flags (0x2) but disk has
updated flags (0x0), causing a mismatch
7. BUG_ON(!(rec->e_flags & OCFS2_EXT_REFCOUNTED)) triggers
Fix by clearing the extent map cache after each extent move/defrag
operation in __ocfs2_move_extents_range(). This ensures subsequent
operations read fresh extent data from disk. |
| In the Linux kernel, the following vulnerability has been resolved:
vfat: fix missing sb_min_blocksize() return value checks
When emulating an nvme device on qemu with both logical_block_size and
physical_block_size set to 8 KiB, but without format, a kernel panic
was triggered during the early boot stage while attempting to mount a
vfat filesystem.
[95553.682035] EXT4-fs (nvme0n1): unable to set blocksize
[95553.684326] EXT4-fs (nvme0n1): unable to set blocksize
[95553.686501] EXT4-fs (nvme0n1): unable to set blocksize
[95553.696448] ISOFS: unsupported/invalid hardware sector size 8192
[95553.697117] ------------[ cut here ]------------
[95553.697567] kernel BUG at fs/buffer.c:1582!
[95553.697984] Oops: invalid opcode: 0000 [#1] SMP NOPTI
[95553.698602] CPU: 0 UID: 0 PID: 7212 Comm: mount Kdump: loaded Not tainted 6.18.0-rc2+ #38 PREEMPT(voluntary)
[95553.699511] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[95553.700534] RIP: 0010:folio_alloc_buffers+0x1bb/0x1c0
[95553.701018] Code: 48 8b 15 e8 93 18 02 65 48 89 35 e0 93 18 02 48 83 c4 10 5b 41 5c 41 5d 41 5e 41 5f 5d 31 d2 31 c9 31 f6 31 ff c3 cc cc cc cc <0f> 0b 90 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f
[95553.702648] RSP: 0018:ffffd1b0c676f990 EFLAGS: 00010246
[95553.703132] RAX: ffff8cfc4176d820 RBX: 0000000000508c48 RCX: 0000000000000001
[95553.703805] RDX: 0000000000002000 RSI: 0000000000000000 RDI: 0000000000000000
[95553.704481] RBP: ffffd1b0c676f9c8 R08: 0000000000000000 R09: 0000000000000000
[95553.705148] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001
[95553.705816] R13: 0000000000002000 R14: fffff8bc8257e800 R15: 0000000000000000
[95553.706483] FS: 000072ee77315840(0000) GS:ffff8cfdd2c8d000(0000) knlGS:0000000000000000
[95553.707248] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[95553.707782] CR2: 00007d8f2a9e5a20 CR3: 0000000039d0c006 CR4: 0000000000772ef0
[95553.708439] PKRU: 55555554
[95553.708734] Call Trace:
[95553.709015] <TASK>
[95553.709266] __getblk_slow+0xd2/0x230
[95553.709641] ? find_get_block_common+0x8b/0x530
[95553.710084] bdev_getblk+0x77/0xa0
[95553.710449] __bread_gfp+0x22/0x140
[95553.710810] fat_fill_super+0x23a/0xfc0
[95553.711216] ? __pfx_setup+0x10/0x10
[95553.711580] ? __pfx_vfat_fill_super+0x10/0x10
[95553.712014] vfat_fill_super+0x15/0x30
[95553.712401] get_tree_bdev_flags+0x141/0x1e0
[95553.712817] get_tree_bdev+0x10/0x20
[95553.713177] vfat_get_tree+0x15/0x20
[95553.713550] vfs_get_tree+0x2a/0x100
[95553.713910] vfs_cmd_create+0x62/0xf0
[95553.714273] __do_sys_fsconfig+0x4e7/0x660
[95553.714669] __x64_sys_fsconfig+0x20/0x40
[95553.715062] x64_sys_call+0x21ee/0x26a0
[95553.715453] do_syscall_64+0x80/0x670
[95553.715816] ? __fs_parse+0x65/0x1e0
[95553.716172] ? fat_parse_param+0x103/0x4b0
[95553.716587] ? vfs_parse_fs_param_source+0x21/0xa0
[95553.717034] ? __do_sys_fsconfig+0x3d9/0x660
[95553.717548] ? __x64_sys_fsconfig+0x20/0x40
[95553.717957] ? x64_sys_call+0x21ee/0x26a0
[95553.718360] ? do_syscall_64+0xb8/0x670
[95553.718734] ? __x64_sys_fsconfig+0x20/0x40
[95553.719141] ? x64_sys_call+0x21ee/0x26a0
[95553.719545] ? do_syscall_64+0xb8/0x670
[95553.719922] ? x64_sys_call+0x1405/0x26a0
[95553.720317] ? do_syscall_64+0xb8/0x670
[95553.720702] ? __x64_sys_close+0x3e/0x90
[95553.721080] ? x64_sys_call+0x1b5e/0x26a0
[95553.721478] ? do_syscall_64+0xb8/0x670
[95553.721841] ? irqentry_exit+0x43/0x50
[95553.722211] ? exc_page_fault+0x90/0x1b0
[95553.722681] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[95553.723166] RIP: 0033:0x72ee774f3afe
[95553.723562] Code: 73 01 c3 48 8b 0d 0a 33 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 49 89 ca b8 af 01 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d da 32 0f 00 f7 d8 64 89 01 48
[95553.725188] RSP: 002b:00007ffe97148978 EFLAGS: 00000246 ORIG_RAX: 00000000000001af
[95553.725892] RAX: ffffffffffffffda RBX:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix scx_enable() crash on helper kthread creation failure
A crash was observed when the sched_ext selftests runner was
terminated with Ctrl+\ while test 15 was running:
NIP [c00000000028fa58] scx_enable.constprop.0+0x358/0x12b0
LR [c00000000028fa2c] scx_enable.constprop.0+0x32c/0x12b0
Call Trace:
scx_enable.constprop.0+0x32c/0x12b0 (unreliable)
bpf_struct_ops_link_create+0x18c/0x22c
__sys_bpf+0x23f8/0x3044
sys_bpf+0x2c/0x6c
system_call_exception+0x124/0x320
system_call_vectored_common+0x15c/0x2ec
kthread_run_worker() returns an ERR_PTR() on failure rather than NULL,
but the current code in scx_alloc_and_add_sched() only checks for a NULL
helper. Incase of failure on SIGQUIT, the error is not handled in
scx_alloc_and_add_sched() and scx_enable() ends up dereferencing an
error pointer.
Error handling is fixed in scx_alloc_and_add_sched() to propagate
PTR_ERR() into ret, so that scx_enable() jumps to the existing error
path, avoiding random dereference on failure. |
| In the Linux kernel, the following vulnerability has been resolved:
net: core: prevent NULL deref in generic_hwtstamp_ioctl_lower()
The ethtool tsconfig Netlink path can trigger a null pointer
dereference. A call chain such as:
tsconfig_prepare_data() ->
dev_get_hwtstamp_phylib() ->
vlan_hwtstamp_get() ->
generic_hwtstamp_get_lower() ->
generic_hwtstamp_ioctl_lower()
results in generic_hwtstamp_ioctl_lower() being called with
kernel_cfg->ifr as NULL.
The generic_hwtstamp_ioctl_lower() function does not expect
a NULL ifr and dereferences it, leading to a system crash.
Fix this by adding a NULL check for kernel_cfg->ifr in
generic_hwtstamp_ioctl_lower(). If ifr is NULL, return -EINVAL. |