| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ip6_tunnel: use skb_vlan_inet_prepare() in __ip6_tnl_rcv()
Blamed commit did not take care of VLAN encapsulations
as spotted by syzbot [1].
Use skb_vlan_inet_prepare() instead of pskb_inet_may_pull().
[1]
BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline]
BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline]
BUG: KMSAN: uninit-value in IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321
__INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline]
INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline]
IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321
ip6ip6_dscp_ecn_decapsulate+0x16f/0x1b0 net/ipv6/ip6_tunnel.c:729
__ip6_tnl_rcv+0xed9/0x1b50 net/ipv6/ip6_tunnel.c:860
ip6_tnl_rcv+0xc3/0x100 net/ipv6/ip6_tunnel.c:903
gre_rcv+0x1529/0x1b90 net/ipv6/ip6_gre.c:-1
ip6_protocol_deliver_rcu+0x1c89/0x2c60 net/ipv6/ip6_input.c:438
ip6_input_finish+0x1f4/0x4a0 net/ipv6/ip6_input.c:489
NF_HOOK include/linux/netfilter.h:318 [inline]
ip6_input+0x9c/0x330 net/ipv6/ip6_input.c:500
ip6_mc_input+0x7ca/0xc10 net/ipv6/ip6_input.c:590
dst_input include/net/dst.h:474 [inline]
ip6_rcv_finish+0x958/0x990 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:318 [inline]
ipv6_rcv+0xf1/0x3c0 net/ipv6/ip6_input.c:311
__netif_receive_skb_one_core net/core/dev.c:6139 [inline]
__netif_receive_skb+0x1df/0xac0 net/core/dev.c:6252
netif_receive_skb_internal net/core/dev.c:6338 [inline]
netif_receive_skb+0x57/0x630 net/core/dev.c:6397
tun_rx_batched+0x1df/0x980 drivers/net/tun.c:1485
tun_get_user+0x5c0e/0x6c60 drivers/net/tun.c:1953
tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0xbe2/0x15d0 fs/read_write.c:686
ksys_write fs/read_write.c:738 [inline]
__do_sys_write fs/read_write.c:749 [inline]
__se_sys_write fs/read_write.c:746 [inline]
__x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746
x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4960 [inline]
slab_alloc_node mm/slub.c:5263 [inline]
kmem_cache_alloc_node_noprof+0x9e7/0x17a0 mm/slub.c:5315
kmalloc_reserve+0x13c/0x4b0 net/core/skbuff.c:586
__alloc_skb+0x805/0x1040 net/core/skbuff.c:690
alloc_skb include/linux/skbuff.h:1383 [inline]
alloc_skb_with_frags+0xc5/0xa60 net/core/skbuff.c:6712
sock_alloc_send_pskb+0xacc/0xc60 net/core/sock.c:2995
tun_alloc_skb drivers/net/tun.c:1461 [inline]
tun_get_user+0x1142/0x6c60 drivers/net/tun.c:1794
tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0xbe2/0x15d0 fs/read_write.c:686
ksys_write fs/read_write.c:738 [inline]
__do_sys_write fs/read_write.c:749 [inline]
__se_sys_write fs/read_write.c:746 [inline]
__x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746
x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
CPU: 0 UID: 0 PID: 6465 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(none)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 |
| With physical access to the device and enough time an attacker can desolder the flash memory, modify it and then reinstall it because of missing encryption. Thus, essential files, such as "/etc/passwd", as well as stored certificates, cryptographic keys, stored PINs and so on can be modified and read, in order to gain SSH root access on the Linux-based K7 model. On the Windows CE based K5 model, the password for the Access Manager can additionally be read in plain text from the stored SQLite database. |
| A vulnerability has been found in code-projects Online Examination System 1.0. Affected is an unknown function of the component Add Pages. Such manipulation leads to cross site scripting. The attack can be executed remotely. The exploit has been disclosed to the public and may be used. |
| A vulnerability was found in code-projects Online Examination System 1.0. Affected by this vulnerability is an unknown functionality of the file /index.php of the component Login Page. Performing a manipulation of the argument User results in sql injection. The attack is possible to be carried out remotely. The exploit has been made public and could be used. |
| A vulnerability was determined in code-projects Online Examination System 1.0. Affected by this issue is some unknown functionality of the file /admin_pic.php. Executing a manipulation can lead to unrestricted upload. The attack may be performed from remote. The exploit has been publicly disclosed and may be utilized. |
| phpMyFAQ is an open source FAQ web application. Versions 4.0.16 and below allow an authenticated user without the dlattachment permission to download FAQ attachments due to a incomprehensive permissions check. The presence of a right key is improperly validated as proof of authorization in attachment.php. Additionally, the group and user permission logic contains a flawed conditional expression that may allow unauthorized access. This issue has been fixed in version |
| An Out-Of-Bounds Write vulnerability affecting the EPRT file reading procedure in SOLIDWORKS eDrawings from Release SOLIDWORKS 2025 through Release SOLIDWORKS 2026 could allow an attacker to execute arbitrary code while opening a specially crafted EPRT file. |
| In the Linux kernel, the following vulnerability has been resolved:
net: can: j1939: j1939_xtp_rx_rts_session_active(): deactivate session upon receiving the second rts
Since j1939_session_deactivate_activate_next() in j1939_tp_rxtimer() is
called only when the timer is enabled, we need to call
j1939_session_deactivate_activate_next() if we cancelled the timer.
Otherwise, refcount for j1939_session leaks, which will later appear as
| unregister_netdevice: waiting for vcan0 to become free. Usage count = 2.
problem. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix crash on profile change rollback failure
mlx5e_netdev_change_profile can fail to attach a new profile and can
fail to rollback to old profile, in such case, we could end up with a
dangling netdev with a fully reset netdev_priv. A retry to change
profile, e.g. another attempt to call mlx5e_netdev_change_profile via
switchdev mode change, will crash trying to access the now NULL
priv->mdev.
This fix allows mlx5e_netdev_change_profile() to handle previous
failures and an empty priv, by not assuming priv is valid.
Pass netdev and mdev to all flows requiring
mlx5e_netdev_change_profile() and avoid passing priv.
In mlx5e_netdev_change_profile() check if current priv is valid, and if
not, just attach the new profile without trying to access the old one.
This fixes the following oops, when enabling switchdev mode for the 2nd
time after first time failure:
## Enabling switchdev mode first time:
mlx5_core 0012:03:00.1: E-Switch: Supported tc chains and prios offload
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: new profile init failed, -12
workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
mlx5_core 0012:03:00.1: mlx5e_netdev_init_profile:6214:(pid 37199): mlx5e_priv_init failed, err=-12
mlx5_core 0012:03:00.1 gpu3rdma1: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12
^^^^^^^^
mlx5_core 0000:00:03.0: E-Switch: Disable: mode(LEGACY), nvfs(0), necvfs(0), active vports(0)
## retry: Enabling switchdev mode 2nd time:
mlx5_core 0000:00:03.0: E-Switch: Supported tc chains and prios offload
BUG: kernel NULL pointer dereference, address: 0000000000000038
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 13 UID: 0 PID: 520 Comm: devlink Not tainted 6.18.0-rc4+ #91 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:mlx5e_detach_netdev+0x3c/0x90
Code: 50 00 00 f0 80 4f 78 02 48 8b bf e8 07 00 00 48 85 ff 74 16 48 8b 73 78 48 d1 ee 83 e6 01 83 f6 01 40 0f b6 f6 e8 c4 42 00 00 <48> 8b 45 38 48 85 c0 74 08 48 89 df e8 cc 47 40 1e 48 8b bb f0 07
RSP: 0018:ffffc90000673890 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8881036a89c0 RCX: 0000000000000000
RDX: ffff888113f63800 RSI: ffffffff822fe720 RDI: 0000000000000000
RBP: 0000000000000000 R08: 0000000000002dcd R09: 0000000000000000
R10: ffffc900006738e8 R11: 00000000ffffffff R12: 0000000000000000
R13: 0000000000000000 R14: ffff8881036a89c0 R15: 0000000000000000
FS: 00007fdfb8384740(0000) GS:ffff88856a9d6000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000038 CR3: 0000000112ae0005 CR4: 0000000000370ef0
Call Trace:
<TASK>
mlx5e_netdev_change_profile+0x45/0xb0
mlx5e_vport_rep_load+0x27b/0x2d0
mlx5_esw_offloads_rep_load+0x72/0xf0
esw_offloads_enable+0x5d0/0x970
mlx5_eswitch_enable_locked+0x349/0x430
? is_mp_supported+0x57/0xb0
mlx5_devlink_eswitch_mode_set+0x26b/0x430
devlink_nl_eswitch_set_doit+0x6f/0xf0
genl_family_rcv_msg_doit+0xe8/0x140
genl_rcv_msg+0x18b/0x290
? __pfx_devlink_nl_pre_doit+0x10/0x10
? __pfx_devlink_nl_eswitch_set_doit+0x10/0x10
? __pfx_devlink_nl_post_doit+0x10/0x10
? __pfx_genl_rcv_msg+0x10/0x10
netlink_rcv_skb+0x52/0x100
genl_rcv+0x28/0x40
netlink_unicast+0x282/0x3e0
? __alloc_skb+0xd6/0x190
netlink_sendmsg+0x1f7/0x430
__sys_sendto+0x213/0x220
? __sys_recvmsg+0x6a/0xd0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x50/0x1f0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fdfb8495047 |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Clear XSTATE_BV[i] in guest XSAVE state whenever XFD[i]=1
When loading guest XSAVE state via KVM_SET_XSAVE, and when updating XFD in
response to a guest WRMSR, clear XFD-disabled features in the saved (or to
be restored) XSTATE_BV to ensure KVM doesn't attempt to load state for
features that are disabled via the guest's XFD. Because the kernel
executes XRSTOR with the guest's XFD, saving XSTATE_BV[i]=1 with XFD[i]=1
will cause XRSTOR to #NM and panic the kernel.
E.g. if fpu_update_guest_xfd() sets XFD without clearing XSTATE_BV:
------------[ cut here ]------------
WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#29: amx_test/848
Modules linked in: kvm_intel kvm irqbypass
CPU: 29 UID: 1000 PID: 848 Comm: amx_test Not tainted 6.19.0-rc2-ffa07f7fd437-x86_amx_nm_xfd_non_init-vm #171 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:exc_device_not_available+0x101/0x110
Call Trace:
<TASK>
asm_exc_device_not_available+0x1a/0x20
RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90
switch_fpu_return+0x4a/0xb0
kvm_arch_vcpu_ioctl_run+0x1245/0x1e40 [kvm]
kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm]
__x64_sys_ioctl+0x8f/0xd0
do_syscall_64+0x62/0x940
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
---[ end trace 0000000000000000 ]---
This can happen if the guest executes WRMSR(MSR_IA32_XFD) to set XFD[18] = 1,
and a host IRQ triggers kernel_fpu_begin() prior to the vmexit handler's
call to fpu_update_guest_xfd().
and if userspace stuffs XSTATE_BV[i]=1 via KVM_SET_XSAVE:
------------[ cut here ]------------
WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#14: amx_test/867
Modules linked in: kvm_intel kvm irqbypass
CPU: 14 UID: 1000 PID: 867 Comm: amx_test Not tainted 6.19.0-rc2-2dace9faccd6-x86_amx_nm_xfd_non_init-vm #168 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:exc_device_not_available+0x101/0x110
Call Trace:
<TASK>
asm_exc_device_not_available+0x1a/0x20
RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90
fpu_swap_kvm_fpstate+0x6b/0x120
kvm_load_guest_fpu+0x30/0x80 [kvm]
kvm_arch_vcpu_ioctl_run+0x85/0x1e40 [kvm]
kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm]
__x64_sys_ioctl+0x8f/0xd0
do_syscall_64+0x62/0x940
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
---[ end trace 0000000000000000 ]---
The new behavior is consistent with the AMX architecture. Per Intel's SDM,
XSAVE saves XSTATE_BV as '0' for components that are disabled via XFD
(and non-compacted XSAVE saves the initial configuration of the state
component):
If XSAVE, XSAVEC, XSAVEOPT, or XSAVES is saving the state component i,
the instruction does not generate #NM when XCR0[i] = IA32_XFD[i] = 1;
instead, it operates as if XINUSE[i] = 0 (and the state component was
in its initial state): it saves bit i of XSTATE_BV field of the XSAVE
header as 0; in addition, XSAVE saves the initial configuration of the
state component (the other instructions do not save state component i).
Alternatively, KVM could always do XRSTOR with XFD=0, e.g. by using
a constant XFD based on the set of enabled features when XSAVEing for
a struct fpu_guest. However, having XSTATE_BV[i]=1 for XFD-disabled
features can only happen in the above interrupt case, or in similar
scenarios involving preemption on preemptible kernels, because
fpu_swap_kvm_fpstate()'s call to save_fpregs_to_fpstate() saves the
outgoing FPU state with the current XFD; and that is (on all but the
first WRMSR to XFD) the guest XFD.
Therefore, XFD can only go out of sync with XSTATE_BV in the above
interrupt case, or in similar scenarios involving preemption on
preemptible kernels, and it we can consider it (de facto) part of KVM
ABI that KVM_GET_XSAVE returns XSTATE_BV[i]=0 for XFD-disabled features.
[Move clea
---truncated--- |
| Deep Instinct Windows Agent 1.2.24.0 contains an unquoted service path vulnerability in the DeepNetworkService that allows local users to potentially execute code with elevated privileges. Attackers can exploit the unquoted path in C:\Program Files\HP Sure Sense\DeepNetworkService.exe to inject malicious code that would execute with LocalSystem permissions during service startup. |
| MyBB Thread Redirect Plugin 0.2.1 contains a cross-site scripting vulnerability in the custom text input field for thread redirects. Attackers can inject malicious SVG scripts that will execute when other users view the thread, allowing arbitrary script execution. |
| Click2Magic 1.1.5 contains a stored cross-site scripting vulnerability that allows attackers to inject malicious scripts in the chat name input. Attackers can craft a malicious payload in the chat name to capture administrator cookies when the admin processes user requests. |
| SeaCMS 11.1 contains a stored cross-site scripting vulnerability in the checkuser parameter of the admin settings page. Attackers can inject malicious JavaScript payloads that will execute in users' browsers when the page is loaded. |
| KMSpico 17.1.0.0 contains an unquoted service path vulnerability in the Service KMSELDI configuration that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted binary path in C:\Program Files\KMSpico\Service_KMS.exe to inject malicious executables and escalate privileges. |
| dataSIMS Avionics ARINC 664-1 version 4.5.3 contains a local buffer overflow vulnerability that allows attackers to overwrite memory by manipulating the milstd1553result.txt file. Attackers can craft a malicious file with carefully constructed payload and alignment sections to potentially execute arbitrary code on the Windows system. |
| Textpattern versions prior to 4.8.3 contain an authenticated remote code execution vulnerability that allows logged-in users to upload malicious PHP files. Attackers can upload a PHP file with a shell command execution payload and execute arbitrary commands by accessing the uploaded file through a specific URL parameter. |
| Softros LAN Messenger 9.6.4 contains an unquoted service path vulnerability in the SoftrosSpellChecker service that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted path in 'C:\Program Files (x86)\Softros Systems\Softros Messenger\Spell Checker\' to inject malicious executables and escalate privileges. |
| Unified Remote 3.9.0.2463 contains a remote code execution vulnerability that allows attackers to send crafted network packets to execute arbitrary commands. Attackers can exploit the service by connecting to port 9512 and sending specially crafted packets to open a command prompt and download and execute malicious payloads. |
| PEEL Shopping 9.3.0 contains a stored cross-site scripting vulnerability in the 'Comments / Special Instructions' parameter of the purchase page. Attackers can inject malicious JavaScript payloads that will execute when the page is refreshed, potentially allowing client-side script execution. |