CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
vfio/type1: prevent underflow of locked_vm via exec()
When a vfio container is preserved across exec, the task does not change,
but it gets a new mm with locked_vm=0, and loses the count from existing
dma mappings. If the user later unmaps a dma mapping, locked_vm underflows
to a large unsigned value, and a subsequent dma map request fails with
ENOMEM in __account_locked_vm.
To avoid underflow, grab and save the mm at the time a dma is mapped.
Use that mm when adjusting locked_vm, rather than re-acquiring the saved
task's mm, which may have changed. If the saved mm is dead, do nothing.
locked_vm is incremented for existing mappings in a subsequent patch. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix amdgpu_irq_put call trace in gmc_v10_0_hw_fini
The gmc.ecc_irq is enabled by firmware per IFWI setting,
and the host driver is not privileged to enable/disable
the interrupt. So, it is meaningless to use the amdgpu_irq_put
function in gmc_v10_0_hw_fini, which also leads to the call
trace.
[ 82.340264] Call Trace:
[ 82.340265] <TASK>
[ 82.340269] gmc_v10_0_hw_fini+0x83/0xa0 [amdgpu]
[ 82.340447] gmc_v10_0_suspend+0xe/0x20 [amdgpu]
[ 82.340623] amdgpu_device_ip_suspend_phase2+0x127/0x1c0 [amdgpu]
[ 82.340789] amdgpu_device_ip_suspend+0x3d/0x80 [amdgpu]
[ 82.340955] amdgpu_device_pre_asic_reset+0xdd/0x2b0 [amdgpu]
[ 82.341122] amdgpu_device_gpu_recover.cold+0x4dd/0xbb2 [amdgpu]
[ 82.341359] amdgpu_debugfs_reset_work+0x4c/0x70 [amdgpu]
[ 82.341529] process_one_work+0x21d/0x3f0
[ 82.341535] worker_thread+0x1fa/0x3c0
[ 82.341538] ? process_one_work+0x3f0/0x3f0
[ 82.341540] kthread+0xff/0x130
[ 82.341544] ? kthread_complete_and_exit+0x20/0x20
[ 82.341547] ret_from_fork+0x22/0x30 |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Add length check in indx_get_root
This adds a length check to guarantee the retrieved index root is legit.
[ 162.459513] BUG: KASAN: use-after-free in hdr_find_e.isra.0+0x10c/0x320
[ 162.460176] Read of size 2 at addr ffff8880037bca99 by task mount/243
[ 162.460851]
[ 162.461252] CPU: 0 PID: 243 Comm: mount Not tainted 6.0.0-rc7 #42
[ 162.461744] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 162.462609] Call Trace:
[ 162.462954] <TASK>
[ 162.463276] dump_stack_lvl+0x49/0x63
[ 162.463822] print_report.cold+0xf5/0x689
[ 162.464608] ? unwind_get_return_address+0x3a/0x60
[ 162.465766] ? hdr_find_e.isra.0+0x10c/0x320
[ 162.466975] kasan_report+0xa7/0x130
[ 162.467506] ? _raw_spin_lock_irq+0xc0/0xf0
[ 162.467998] ? hdr_find_e.isra.0+0x10c/0x320
[ 162.468536] __asan_load2+0x68/0x90
[ 162.468923] hdr_find_e.isra.0+0x10c/0x320
[ 162.469282] ? cmp_uints+0xe0/0xe0
[ 162.469557] ? cmp_sdh+0x90/0x90
[ 162.469864] ? ni_find_attr+0x214/0x300
[ 162.470217] ? ni_load_mi+0x80/0x80
[ 162.470479] ? entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 162.470931] ? ntfs_bread_run+0x190/0x190
[ 162.471307] ? indx_get_root+0xe4/0x190
[ 162.471556] ? indx_get_root+0x140/0x190
[ 162.471833] ? indx_init+0x1e0/0x1e0
[ 162.472069] ? fnd_clear+0x115/0x140
[ 162.472363] ? _raw_spin_lock_irqsave+0x100/0x100
[ 162.472731] indx_find+0x184/0x470
[ 162.473461] ? sysvec_apic_timer_interrupt+0x57/0xc0
[ 162.474429] ? indx_find_buffer+0x2d0/0x2d0
[ 162.474704] ? do_syscall_64+0x3b/0x90
[ 162.474962] dir_search_u+0x196/0x2f0
[ 162.475381] ? ntfs_nls_to_utf16+0x450/0x450
[ 162.475661] ? ntfs_security_init+0x3d6/0x440
[ 162.475906] ? is_sd_valid+0x180/0x180
[ 162.476191] ntfs_extend_init+0x13f/0x2c0
[ 162.476496] ? ntfs_fix_post_read+0x130/0x130
[ 162.476861] ? iput.part.0+0x286/0x320
[ 162.477325] ntfs_fill_super+0x11e0/0x1b50
[ 162.477709] ? put_ntfs+0x1d0/0x1d0
[ 162.477970] ? vsprintf+0x20/0x20
[ 162.478258] ? set_blocksize+0x95/0x150
[ 162.478538] get_tree_bdev+0x232/0x370
[ 162.478789] ? put_ntfs+0x1d0/0x1d0
[ 162.479038] ntfs_fs_get_tree+0x15/0x20
[ 162.479374] vfs_get_tree+0x4c/0x130
[ 162.479729] path_mount+0x654/0xfe0
[ 162.480124] ? putname+0x80/0xa0
[ 162.480484] ? finish_automount+0x2e0/0x2e0
[ 162.480894] ? putname+0x80/0xa0
[ 162.481467] ? kmem_cache_free+0x1c4/0x440
[ 162.482280] ? putname+0x80/0xa0
[ 162.482714] do_mount+0xd6/0xf0
[ 162.483264] ? path_mount+0xfe0/0xfe0
[ 162.484782] ? __kasan_check_write+0x14/0x20
[ 162.485593] __x64_sys_mount+0xca/0x110
[ 162.486024] do_syscall_64+0x3b/0x90
[ 162.486543] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 162.487141] RIP: 0033:0x7f9d374e948a
[ 162.488324] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[ 162.489728] RSP: 002b:00007ffe30e73d18 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5
[ 162.490971] RAX: ffffffffffffffda RBX: 0000561cdb43a060 RCX: 00007f9d374e948a
[ 162.491669] RDX: 0000561cdb43a260 RSI: 0000561cdb43a2e0 RDI: 0000561cdb442af0
[ 162.492050] RBP: 0000000000000000 R08: 0000561cdb43a280 R09: 0000000000000020
[ 162.492459] R10: 00000000c0ed0000 R11: 0000000000000206 R12: 0000561cdb442af0
[ 162.493183] R13: 0000561cdb43a260 R14: 0000000000000000 R15: 00000000ffffffff
[ 162.493644] </TASK>
[ 162.493908]
[ 162.494214] The buggy address belongs to the physical page:
[ 162.494761] page:000000003e38a3d5 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x37bc
[ 162.496064] flags: 0xfffffc0000000(node=0|zone=1|lastcpupid=0x1fffff)
[ 162.497278] raw: 000fffffc0000000 ffffea00000df1c8 ffffea00000df008 0000000000000000
[ 162.498928] raw: 0000000000000000 0000000000240000 00000000ffffffff 0000000000000000
[ 162.500542] page dumped becau
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
xen/gntdev: Prevent leaking grants
Prior to this commit, if a grant mapping operation failed partially,
some of the entries in the map_ops array would be invalid, whereas all
of the entries in the kmap_ops array would be valid. This in turn would
cause the following logic in gntdev_map_grant_pages to become invalid:
for (i = 0; i < map->count; i++) {
if (map->map_ops[i].status == GNTST_okay) {
map->unmap_ops[i].handle = map->map_ops[i].handle;
if (!use_ptemod)
alloced++;
}
if (use_ptemod) {
if (map->kmap_ops[i].status == GNTST_okay) {
if (map->map_ops[i].status == GNTST_okay)
alloced++;
map->kunmap_ops[i].handle = map->kmap_ops[i].handle;
}
}
}
...
atomic_add(alloced, &map->live_grants);
Assume that use_ptemod is true (i.e., the domain mapping the granted
pages is a paravirtualized domain). In the code excerpt above, note that
the "alloced" variable is only incremented when both kmap_ops[i].status
and map_ops[i].status are set to GNTST_okay (i.e., both mapping
operations are successful). However, as also noted above, there are
cases where a grant mapping operation fails partially, breaking the
assumption of the code excerpt above.
The aforementioned causes map->live_grants to be incorrectly set. In
some cases, all of the map_ops mappings fail, but all of the kmap_ops
mappings succeed, meaning that live_grants may remain zero. This in turn
makes it impossible to unmap the successfully grant-mapped pages pointed
to by kmap_ops, because unmap_grant_pages has the following snippet of
code at its beginning:
if (atomic_read(&map->live_grants) == 0)
return; /* Nothing to do */
In other cases where only some of the map_ops mappings fail but all
kmap_ops mappings succeed, live_grants is made positive, but when the
user requests unmapping the grant-mapped pages, __unmap_grant_pages_done
will then make map->live_grants negative, because the latter function
does not check if all of the pages that were requested to be unmapped
were actually unmapped, and the same function unconditionally subtracts
"data->count" (i.e., a value that can be greater than map->live_grants)
from map->live_grants. The side effects of a negative live_grants value
have not been studied.
The net effect of all of this is that grant references are leaked in one
of the above conditions. In Qubes OS v4.1 (which uses Xen's grant
mechanism extensively for X11 GUI isolation), this issue manifests
itself with warning messages like the following to be printed out by the
Linux kernel in the VM that had granted pages (that contain X11 GUI
window data) to dom0: "g.e. 0x1234 still pending", especially after the
user rapidly resizes GUI VM windows (causing some grant-mapping
operations to partially or completely fail, due to the fact that the VM
unshares some of the pages as part of the window resizing, making the
pages impossible to grant-map from dom0).
The fix for this issue involves counting all successful map_ops and
kmap_ops mappings separately, and then adding the sum to live_grants.
During unmapping, only the number of successfully unmapped grants is
subtracted from live_grants. The code is also modified to check for
negative live_grants values after the subtraction and warn the user. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: Fix use after free for wext
Key information in wext.connect is not reset on (re)connect and can hold
data from a previous connection.
Reset key data to avoid that drivers or mac80211 incorrectly detect a
WEP connection request and access the freed or already reused memory.
Additionally optimize cfg80211_sme_connect() and avoid an useless
schedule of conn_work. |
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: Removed unneeded of_node_put in felix_parse_ports_node
Remove unnecessary of_node_put from the continue path to prevent
child node from being released twice, which could avoid resource
leak or other unexpected issues. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: Fix crash on isr after kexec()
If the system is rebooted via isr(), the IRQ handler might
be triggered before the domain is initialized. Resulting on
an invalid memory access error.
Fix:
[ 0.500930] Unable to handle kernel read from unreadable memory at virtual address 0000000000000070
[ 0.501166] Call trace:
[ 0.501174] report_iommu_fault+0x28/0xfc
[ 0.501180] mtk_iommu_isr+0x10c/0x1c0
[ joro: Fixed spelling in commit message ] |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Protect against send buffer overflow in NFSv2 READDIR
Restore the previous limit on the @count argument to prevent a
buffer overflow attack. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: make sure skb->len != 0 when redirecting to a tunneling device
syzkaller managed to trigger another case where skb->len == 0
when we enter __dev_queue_xmit:
WARNING: CPU: 0 PID: 2470 at include/linux/skbuff.h:2576 skb_assert_len include/linux/skbuff.h:2576 [inline]
WARNING: CPU: 0 PID: 2470 at include/linux/skbuff.h:2576 __dev_queue_xmit+0x2069/0x35e0 net/core/dev.c:4295
Call Trace:
dev_queue_xmit+0x17/0x20 net/core/dev.c:4406
__bpf_tx_skb net/core/filter.c:2115 [inline]
__bpf_redirect_no_mac net/core/filter.c:2140 [inline]
__bpf_redirect+0x5fb/0xda0 net/core/filter.c:2163
____bpf_clone_redirect net/core/filter.c:2447 [inline]
bpf_clone_redirect+0x247/0x390 net/core/filter.c:2419
bpf_prog_48159a89cb4a9a16+0x59/0x5e
bpf_dispatcher_nop_func include/linux/bpf.h:897 [inline]
__bpf_prog_run include/linux/filter.h:596 [inline]
bpf_prog_run include/linux/filter.h:603 [inline]
bpf_test_run+0x46c/0x890 net/bpf/test_run.c:402
bpf_prog_test_run_skb+0xbdc/0x14c0 net/bpf/test_run.c:1170
bpf_prog_test_run+0x345/0x3c0 kernel/bpf/syscall.c:3648
__sys_bpf+0x43a/0x6c0 kernel/bpf/syscall.c:5005
__do_sys_bpf kernel/bpf/syscall.c:5091 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5089 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5089
do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48
entry_SYSCALL_64_after_hwframe+0x61/0xc6
The reproducer doesn't really reproduce outside of syzkaller
environment, so I'm taking a guess here. It looks like we
do generate correct ETH_HLEN-sized packet, but we redirect
the packet to the tunneling device. Before we do so, we
__skb_pull l2 header and arrive again at skb->len == 0.
Doesn't seem like we can do anything better than having
an explicit check after __skb_pull? |
In the Linux kernel, the following vulnerability has been resolved:
regulator: core: fix use_count leakage when handling boot-on
I found a use_count leakage towards supply regulator of rdev with
boot-on option.
┌───────────────────┐ ┌───────────────────┐
│ regulator_dev A │ │ regulator_dev B │
│ (boot-on) │ │ (boot-on) │
│ use_count=0 │◀──supply──│ use_count=1 │
│ │ │ │
└───────────────────┘ └───────────────────┘
In case of rdev(A) configured with `regulator-boot-on', the use_count
of supplying regulator(B) will increment inside
regulator_enable(rdev->supply).
Thus, B will acts like always-on, and further balanced
regulator_enable/disable cannot actually disable it anymore.
However, B was also configured with `regulator-boot-on', we wish it
could be disabled afterwards. |
A flaw has been found in Campcodes Online Job Finder System 1.0. This affects an unknown function of the file /index.php?q=result&searchfor=bycompany. This manipulation of the argument Search causes sql injection. The attack can be initiated remotely. The exploit has been published and may be used. |
In the Linux kernel, the following vulnerability has been resolved:
mmc: vub300: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and goto error path which will call
mmc_free_host(), besides, the timer added before mmc_add_host() needs be del.
And this patch fixes another missing call mmc_free_host() if usb_control_msg()
fails. |
The cleanTcs mutation in Chaos Controller Manager is vulnerable to OS command injection. In conjunction with CVE-2025-59358, this allows unauthenticated in-cluster attackers to perform remote code execution across the cluster. |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: don't hold ni_lock when calling truncate_setsize()
syzbot is reporting hung task at do_user_addr_fault() [1], for there is
a silent deadlock between PG_locked bit and ni_lock lock.
Since filemap_update_page() calls filemap_read_folio() after calling
folio_trylock() which will set PG_locked bit, ntfs_truncate() must not
call truncate_setsize() which will wait for PG_locked bit to be cleared
when holding ni_lock lock. |
In the Linux kernel, the following vulnerability has been resolved:
xfrm: add NULL check in xfrm_update_ae_params
Normally, x->replay_esn and x->preplay_esn should be allocated at
xfrm_alloc_replay_state_esn(...) in xfrm_state_construct(...), hence the
xfrm_update_ae_params(...) is okay to update them. However, the current
implementation of xfrm_new_ae(...) allows a malicious user to directly
dereference a NULL pointer and crash the kernel like below.
BUG: kernel NULL pointer dereference, address: 0000000000000000
PGD 8253067 P4D 8253067 PUD 8e0e067 PMD 0
Oops: 0002 [#1] PREEMPT SMP KASAN NOPTI
CPU: 0 PID: 98 Comm: poc.npd Not tainted 6.4.0-rc7-00072-gdad9774deaf1 #8
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.o4
RIP: 0010:memcpy_orig+0xad/0x140
Code: e8 4c 89 5f e0 48 8d 7f e0 73 d2 83 c2 20 48 29 d6 48 29 d7 83 fa 10 72 34 4c 8b 06 4c 8b 4e 08 c
RSP: 0018:ffff888008f57658 EFLAGS: 00000202
RAX: 0000000000000000 RBX: ffff888008bd0000 RCX: ffffffff8238e571
RDX: 0000000000000018 RSI: ffff888007f64844 RDI: 0000000000000000
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffff888008f57818
R13: ffff888007f64aa4 R14: 0000000000000000 R15: 0000000000000000
FS: 00000000014013c0(0000) GS:ffff88806d600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000000054d8000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __die+0x1f/0x70
? page_fault_oops+0x1e8/0x500
? __pfx_is_prefetch.constprop.0+0x10/0x10
? __pfx_page_fault_oops+0x10/0x10
? _raw_spin_unlock_irqrestore+0x11/0x40
? fixup_exception+0x36/0x460
? _raw_spin_unlock_irqrestore+0x11/0x40
? exc_page_fault+0x5e/0xc0
? asm_exc_page_fault+0x26/0x30
? xfrm_update_ae_params+0xd1/0x260
? memcpy_orig+0xad/0x140
? __pfx__raw_spin_lock_bh+0x10/0x10
xfrm_update_ae_params+0xe7/0x260
xfrm_new_ae+0x298/0x4e0
? __pfx_xfrm_new_ae+0x10/0x10
? __pfx_xfrm_new_ae+0x10/0x10
xfrm_user_rcv_msg+0x25a/0x410
? __pfx_xfrm_user_rcv_msg+0x10/0x10
? __alloc_skb+0xcf/0x210
? stack_trace_save+0x90/0xd0
? filter_irq_stacks+0x1c/0x70
? __stack_depot_save+0x39/0x4e0
? __kasan_slab_free+0x10a/0x190
? kmem_cache_free+0x9c/0x340
? netlink_recvmsg+0x23c/0x660
? sock_recvmsg+0xeb/0xf0
? __sys_recvfrom+0x13c/0x1f0
? __x64_sys_recvfrom+0x71/0x90
? do_syscall_64+0x3f/0x90
? entry_SYSCALL_64_after_hwframe+0x72/0xdc
? copyout+0x3e/0x50
netlink_rcv_skb+0xd6/0x210
? __pfx_xfrm_user_rcv_msg+0x10/0x10
? __pfx_netlink_rcv_skb+0x10/0x10
? __pfx_sock_has_perm+0x10/0x10
? mutex_lock+0x8d/0xe0
? __pfx_mutex_lock+0x10/0x10
xfrm_netlink_rcv+0x44/0x50
netlink_unicast+0x36f/0x4c0
? __pfx_netlink_unicast+0x10/0x10
? netlink_recvmsg+0x500/0x660
netlink_sendmsg+0x3b7/0x700
This Null-ptr-deref bug is assigned CVE-2023-3772. And this commit
adds additional NULL check in xfrm_update_ae_params to fix the NPD. |
In the Linux kernel, the following vulnerability has been resolved:
drivers: net: qlcnic: Fix potential memory leak in qlcnic_sriov_init()
If vp alloc failed in qlcnic_sriov_init(), all previously allocated vp
needs to be freed. |
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: Remove WARN_ON for device endpoint command timeouts
This commit addresses a rarely observed endpoint command timeout
which causes kernel panic due to warn when 'panic_on_warn' is enabled
and unnecessary call trace prints when 'panic_on_warn' is disabled.
It is seen during fast software-controlled connect/disconnect testcases.
The following is one such endpoint command timeout that we observed:
1. Connect
=======
->dwc3_thread_interrupt
->dwc3_ep0_interrupt
->configfs_composite_setup
->composite_setup
->usb_ep_queue
->dwc3_gadget_ep0_queue
->__dwc3_gadget_ep0_queue
->__dwc3_ep0_do_control_data
->dwc3_send_gadget_ep_cmd
2. Disconnect
==========
->dwc3_thread_interrupt
->dwc3_gadget_disconnect_interrupt
->dwc3_ep0_reset_state
->dwc3_ep0_end_control_data
->dwc3_send_gadget_ep_cmd
In the issue scenario, in Exynos platforms, we observed that control
transfers for the previous connect have not yet been completed and end
transfer command sent as a part of the disconnect sequence and
processing of USB_ENDPOINT_HALT feature request from the host timeout.
This maybe an expected scenario since the controller is processing EP
commands sent as a part of the previous connect. It maybe better to
remove WARN_ON in all places where device endpoint commands are sent to
avoid unnecessary kernel panic due to warn. |
In the Linux kernel, the following vulnerability has been resolved:
igb: Do not free q_vector unless new one was allocated
Avoid potential use-after-free condition under memory pressure. If the
kzalloc() fails, q_vector will be freed but left in the original
adapter->q_vector[v_idx] array position. |
In the Linux kernel, the following vulnerability has been resolved:
drm/vkms: Fix memory leak in vkms_init()
A memory leak was reported after the vkms module install failed.
unreferenced object 0xffff88810bc28520 (size 16):
comm "modprobe", pid 9662, jiffies 4298009455 (age 42.590s)
hex dump (first 16 bytes):
01 01 00 64 81 88 ff ff 00 00 dc 0a 81 88 ff ff ...d............
backtrace:
[<00000000e7561ff8>] kmalloc_trace+0x27/0x60
[<000000000b1954a0>] 0xffffffffc45200a9
[<00000000abbf1da0>] do_one_initcall+0xd0/0x4f0
[<000000001505ee87>] do_init_module+0x1a4/0x680
[<00000000958079ad>] load_module+0x6249/0x7110
[<00000000117e4696>] __do_sys_finit_module+0x140/0x200
[<00000000f74b12d2>] do_syscall_64+0x35/0x80
[<000000008fc6fcde>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
The reason is that the vkms_init() returns without checking the return
value of vkms_create(), and if the vkms_create() failed, the config
allocated at the beginning of vkms_init() is leaked.
vkms_init()
config = kmalloc(...) # config allocated
...
return vkms_create() # vkms_create failed and config is leaked
Fix this problem by checking return value of vkms_create() and free the
config if error happened. |
In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: Reinit port->pm on port specific driver unbind
When we unbind a serial port hardware specific 8250 driver, the generic
serial8250 driver takes over the port. After that we see an oops about 10
seconds later. This can produce the following at least on some TI SoCs:
Unhandled fault: imprecise external abort (0x1406)
Internal error: : 1406 [#1] SMP ARM
Turns out that we may still have the serial port hardware specific driver
port->pm in use, and serial8250_pm() tries to call it after the port
specific driver is gone:
serial8250_pm [8250_base] from uart_change_pm+0x54/0x8c [serial_base]
uart_change_pm [serial_base] from uart_hangup+0x154/0x198 [serial_base]
uart_hangup [serial_base] from __tty_hangup.part.0+0x328/0x37c
__tty_hangup.part.0 from disassociate_ctty+0x154/0x20c
disassociate_ctty from do_exit+0x744/0xaac
do_exit from do_group_exit+0x40/0x8c
do_group_exit from __wake_up_parent+0x0/0x1c
Let's fix the issue by calling serial8250_set_defaults() in
serial8250_unregister_port(). This will set the port back to using
the serial8250 default functions, and sets the port->pm to point to
serial8250_pm. |